Palladium-chloride ion coordination stabilizes NiFe layered double hydroxides for alkaline seawater oxidation at industrial current densities

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL
Yuchun Ren , Yaxin Guo , Zixiao Li , Shaohuan Hong , Shengjun Sun , Chaoxin Yang , Fatma A. Ibrahim , Mohamed S. Hamdy , Feng Gong , Yanqin Lv , Xuping Sun , Bo Tang
{"title":"Palladium-chloride ion coordination stabilizes NiFe layered double hydroxides for alkaline seawater oxidation at industrial current densities","authors":"Yuchun Ren ,&nbsp;Yaxin Guo ,&nbsp;Zixiao Li ,&nbsp;Shaohuan Hong ,&nbsp;Shengjun Sun ,&nbsp;Chaoxin Yang ,&nbsp;Fatma A. Ibrahim ,&nbsp;Mohamed S. Hamdy ,&nbsp;Feng Gong ,&nbsp;Yanqin Lv ,&nbsp;Xuping Sun ,&nbsp;Bo Tang","doi":"10.1016/j.jcis.2025.138388","DOIUrl":null,"url":null,"abstract":"<div><div>Seawater electrolysis represents a promising route for sustainable hydrogen production, offering substantial potential for large-scale energy conversion applications. However, ample chloride ions (Cl<sup>−</sup>) in seawater promote competitive chlorine evolution reaction at the anode, compromising oxidation selectivity and significantly shortening electrode lifespan, particularly under industrial-level current densities (<em>j</em>). In this study, a self-supported Ni-foam electrode was synthesized by anchoring palladium (Pd) nanoparticles on NiFe layered double hydroxide (Pd@NiFe LDH/NF) to serve as a robust catalyst for alkaline seawater oxidation (ASO). Pd nanoparticles not only improve electrical conductivity and enhance ASO activity but also spontaneously coordinate with Cl<sup>−</sup>, effectively mitigating active site degradation through the common-ion effect. Notably, Pd@NiFe LDH/NF delivers a <em>j</em> of 1 A cm<sup>−2</sup> at an overpotential of 370 mV and operates stably for over 500 h, highlighting its high activity and long-term durability. This study offers critical guidance for the rational design of Cl<sup>−</sup>-resistant anode catalysts, presenting a viable strategy to overcome corrosion challenges during the ASO process</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"700 ","pages":"Article 138388"},"PeriodicalIF":9.4000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979725017795","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Seawater electrolysis represents a promising route for sustainable hydrogen production, offering substantial potential for large-scale energy conversion applications. However, ample chloride ions (Cl) in seawater promote competitive chlorine evolution reaction at the anode, compromising oxidation selectivity and significantly shortening electrode lifespan, particularly under industrial-level current densities (j). In this study, a self-supported Ni-foam electrode was synthesized by anchoring palladium (Pd) nanoparticles on NiFe layered double hydroxide (Pd@NiFe LDH/NF) to serve as a robust catalyst for alkaline seawater oxidation (ASO). Pd nanoparticles not only improve electrical conductivity and enhance ASO activity but also spontaneously coordinate with Cl, effectively mitigating active site degradation through the common-ion effect. Notably, Pd@NiFe LDH/NF delivers a j of 1 A cm−2 at an overpotential of 370 mV and operates stably for over 500 h, highlighting its high activity and long-term durability. This study offers critical guidance for the rational design of Cl-resistant anode catalysts, presenting a viable strategy to overcome corrosion challenges during the ASO process

Abstract Image

钯-氯离子配位稳定NiFe层状双氢氧化物在工业电流密度下用于碱性海水氧化
海水电解是一种有前途的可持续制氢途径,为大规模能源转换应用提供了巨大的潜力。然而,海水中充足的氯离子(Cl−)促进阳极的竞争性氯析出反应,损害氧化选择性并显着缩短电极寿命,特别是在工业水平电流密度下(j)。在本研究中,将钯(Pd)纳米粒子锚定在NiFe层状双氢氧化物(Pd@NiFe LDH/NF)上,合成了一种自支撑型泡沫镍电极,作为碱性海水氧化(ASO)的稳健催化剂。Pd纳米粒子不仅能提高导电性能,增强ASO活性,还能与Cl−自发配合,通过共离子效应有效减轻活性位点的降解。值得注意的是,Pd@NiFe LDH/NF在过电位为370 mV时提供1 a cm−2的j,并稳定运行超过500小时,突出了其高活性和长期耐用性。该研究为抗Cl−阳极催化剂的合理设计提供了重要指导,为克服ASO过程中的腐蚀挑战提供了可行的策略
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信