Thermodynamically engineered V3O7/V6O13 heterojunction enable high-performance aqueous zinc-ion batteries through cooperative dual-phase storage

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL
Yanzi Lei , Dawei Chai , Bin Zhang , Zhiwei Guo , Danling Zhang , Luyao Luo , Kuang Xu , Shiyu Hu , Niandi Chen , Hai Wang
{"title":"Thermodynamically engineered V3O7/V6O13 heterojunction enable high-performance aqueous zinc-ion batteries through cooperative dual-phase storage","authors":"Yanzi Lei ,&nbsp;Dawei Chai ,&nbsp;Bin Zhang ,&nbsp;Zhiwei Guo ,&nbsp;Danling Zhang ,&nbsp;Luyao Luo ,&nbsp;Kuang Xu ,&nbsp;Shiyu Hu ,&nbsp;Niandi Chen ,&nbsp;Hai Wang","doi":"10.1016/j.jcis.2025.138366","DOIUrl":null,"url":null,"abstract":"<div><div>Developing high-performance cathode materials with excellent rate capability and long-term cycling stability remains a critical challenge for aqueous zinc-ion batteries (AZIBs). Herein, we demonstrate a novel strategy for synthesizing V<sub>3</sub>O<sub>7</sub>/V<sub>6</sub>O<sub>13</sub> heterojunction through thermodynamically controlled phase transformation. Unlike traditional heterostructure designs that rely on interfacial effects or conductive carbon additives, this work presents a paradigm shift by utilizing the synergistic effects of individual components through a simple hydrothermal method combined with low-temperature heat treatment. The rational design enables in-situ generation of V<sub>6</sub>O<sub>13</sub> through controlled oxygen vacancy formation in V<sub>3</sub>O<sub>7</sub>. The unique heterostructure exhibits exceptional electrochemical performance, delivering a high reversible capacity of 278.5 mAh g<sup>−1</sup> at 0.1 A g<sup>−1</sup> and maintaining 163.5 mAh g<sup>−1</sup> at 5 A g<sup>−1</sup> over 4000 cycles with 84.8 % retention. Mechanistic investigations, complemented by density functional theory (DFT) calculations which revealed favorable interfacial energetics and charge redistribution, reveal that the superior performance originates from a novel cooperative dual-phase storage mechanism, where the metallic V<sub>6</sub>O<sub>13</sub> and the formation of reversible H<sub>3.78</sub>V<sub>6</sub>O<sub>13</sub> facilitate the thermodynamically favorable formation of Zn<sub>3</sub>V<sub>2</sub>O<sub>7</sub>(OH)<sub>2</sub>·2H<sub>2</sub>O through H<sup>+</sup> consumption. This work provides new insights into designing high-performance cathode materials through thermodynamically controlled phase engineering.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"700 ","pages":"Article 138366"},"PeriodicalIF":9.4000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979725017576","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Developing high-performance cathode materials with excellent rate capability and long-term cycling stability remains a critical challenge for aqueous zinc-ion batteries (AZIBs). Herein, we demonstrate a novel strategy for synthesizing V3O7/V6O13 heterojunction through thermodynamically controlled phase transformation. Unlike traditional heterostructure designs that rely on interfacial effects or conductive carbon additives, this work presents a paradigm shift by utilizing the synergistic effects of individual components through a simple hydrothermal method combined with low-temperature heat treatment. The rational design enables in-situ generation of V6O13 through controlled oxygen vacancy formation in V3O7. The unique heterostructure exhibits exceptional electrochemical performance, delivering a high reversible capacity of 278.5 mAh g−1 at 0.1 A g−1 and maintaining 163.5 mAh g−1 at 5 A g−1 over 4000 cycles with 84.8 % retention. Mechanistic investigations, complemented by density functional theory (DFT) calculations which revealed favorable interfacial energetics and charge redistribution, reveal that the superior performance originates from a novel cooperative dual-phase storage mechanism, where the metallic V6O13 and the formation of reversible H3.78V6O13 facilitate the thermodynamically favorable formation of Zn3V2O7(OH)2·2H2O through H+ consumption. This work provides new insights into designing high-performance cathode materials through thermodynamically controlled phase engineering.

Abstract Image

热力学工程vo7 /V6O13异质结通过协同双相存储实现高性能水性锌离子电池
开发具有优异倍率性能和长期循环稳定性的高性能正极材料仍然是水性锌离子电池(AZIBs)面临的关键挑战。在此,我们展示了一种通过热力学控制相变合成V3O7/V6O13异质结的新策略。与依赖界面效应或导电碳添加剂的传统异质结构设计不同,这项工作通过简单的水热方法结合低温热处理,利用单个组分的协同效应,提出了一种范式转变。合理的设计通过控制V3O7中氧空位的形成,实现了V6O13的原位生成。独特的异质结构表现出优异的电化学性能,在0.1 a g−1时提供278.5 mAh g−1的高可逆容量,在5 a g−1时保持163.5 mAh g−1,超过4000次循环,保留率为84.8 %。力学研究和密度功能理论(DFT)计算显示了良好的界面能量和电荷重分布,表明优越的性能源于一种新的合作双相存储机制,其中金属V6O13和可逆H3.78V6O13的形成通过H+消耗促进了Zn3V2O7(OH)2·2H2O的热力学有利形成。这项工作为通过热控相工程设计高性能正极材料提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信