Sub-nanometer nanowire-enhanced ultra-strong, eco-friendly and recyclable water-based adhesives

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL
Zuodong Zhang , Yingshuo Xiong , Meiwen Cao
{"title":"Sub-nanometer nanowire-enhanced ultra-strong, eco-friendly and recyclable water-based adhesives","authors":"Zuodong Zhang ,&nbsp;Yingshuo Xiong ,&nbsp;Meiwen Cao","doi":"10.1016/j.jcis.2025.138405","DOIUrl":null,"url":null,"abstract":"<div><div>Traditional adhesives face an enduring dilemma, that is, oil-based systems achieve high strength at the cost of volatile organic compound (VOC) emissions, while water-based alternatives suffer from inadequate performance. To resolve this paradox, a sub-nanometer filler-reinforced adhesive has been fabricated by integrating ultra-flexible gadolinium oxyhydroxide (GdOOH) nanowires (diameter &lt; 1 nm) into a polyacrylic acid (PAA) aqueous matrix. The sub-nanometer dimensions and polymer-like flexibility of GdOOH nanowires enable uniform dispersion via dynamic hydrogen bonding, mechanical interlocking, and chemical anchoring, synergistically optimizing the cohesion-adhesion balance. With merely 1 wt% GdOOH loading, the lap shear strength surges by 285 % (3.96 MPa vs. 1.39 MPa for pure PAA), while retaining 75 % initial strength after 20 fatigue cycles, which is unprecedented for water-based adhesives. The composite demonstrates robust humidity (10–80 % RH) and temperature (−40 °C to 50 °C) adaptability, maintaining &gt;1.5 MPa adhesion across diverse substrates (wood, metal, glass). Its reversible debonding via water-responsive hydrogen bond disruption, near-zero VOC emissions, and recyclability (95 % strength recovery) offer a sustainable paradigm. This \"dynamic bonding–nano-interlocking\" strategy bridges organic-inorganic interfaces, paving the way for high-performance, eco-friendly adhesives in automotive, electronics, and biomedical applications.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"700 ","pages":"Article 138405"},"PeriodicalIF":9.4000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979725017965","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional adhesives face an enduring dilemma, that is, oil-based systems achieve high strength at the cost of volatile organic compound (VOC) emissions, while water-based alternatives suffer from inadequate performance. To resolve this paradox, a sub-nanometer filler-reinforced adhesive has been fabricated by integrating ultra-flexible gadolinium oxyhydroxide (GdOOH) nanowires (diameter < 1 nm) into a polyacrylic acid (PAA) aqueous matrix. The sub-nanometer dimensions and polymer-like flexibility of GdOOH nanowires enable uniform dispersion via dynamic hydrogen bonding, mechanical interlocking, and chemical anchoring, synergistically optimizing the cohesion-adhesion balance. With merely 1 wt% GdOOH loading, the lap shear strength surges by 285 % (3.96 MPa vs. 1.39 MPa for pure PAA), while retaining 75 % initial strength after 20 fatigue cycles, which is unprecedented for water-based adhesives. The composite demonstrates robust humidity (10–80 % RH) and temperature (−40 °C to 50 °C) adaptability, maintaining >1.5 MPa adhesion across diverse substrates (wood, metal, glass). Its reversible debonding via water-responsive hydrogen bond disruption, near-zero VOC emissions, and recyclability (95 % strength recovery) offer a sustainable paradigm. This "dynamic bonding–nano-interlocking" strategy bridges organic-inorganic interfaces, paving the way for high-performance, eco-friendly adhesives in automotive, electronics, and biomedical applications.

Abstract Image

亚纳米纳米线增强超强,环保和可回收的水性粘合剂
传统粘合剂面临着一个长期的困境,即油基系统以挥发性有机化合物(VOC)排放为代价获得高强度,而水性替代品则存在性能不足的问题。为了解决这一矛盾,将超柔性氢氧化钆(GdOOH)纳米线(直径<;1 nm)加入聚丙烯酸(PAA)水性基质中。GdOOH纳米线的亚纳米尺寸和聚合物般的柔韧性可以通过动态氢键、机械联锁和化学锚定实现均匀分散,协同优化内聚-粘附平衡。在1 wt%的GdOOH载荷下,交联抗剪强度增加了285% (3.96 MPa,纯PAA为1.39 MPa),在20次疲劳循环后仍保持75%的初始强度,这对于水性胶粘剂来说是前所未有的。该复合材料具有很强的湿度(10 - 80% RH)和温度(- 40°C至50°C)适应性,在不同的基材(木材,金属,玻璃)上保持1.5 MPa的附着力。其可通过水响应氢键破坏进行可逆脱粘,VOC排放量接近零,可回收性(强度回收率95%),是一种可持续发展的范例。这种“动态键合-纳米互锁”策略架起了有机-无机界面的桥梁,为汽车、电子和生物医学领域的高性能、环保粘合剂铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信