Ferroelectric polarization modulated optoelectronic synapses based on BaTiO3/TiO2 heterojunction for non-volatile visual memory

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL
Zhifei Jian , Wenhua Li , Lin Zhang , Xingui Tang , Renkai Zhao , Yongxi Liang , Yanping Jiang , Xiaobin Guo , Guowu Tang , Kai Yan
{"title":"Ferroelectric polarization modulated optoelectronic synapses based on BaTiO3/TiO2 heterojunction for non-volatile visual memory","authors":"Zhifei Jian ,&nbsp;Wenhua Li ,&nbsp;Lin Zhang ,&nbsp;Xingui Tang ,&nbsp;Renkai Zhao ,&nbsp;Yongxi Liang ,&nbsp;Yanping Jiang ,&nbsp;Xiaobin Guo ,&nbsp;Guowu Tang ,&nbsp;Kai Yan","doi":"10.1016/j.jcis.2025.138398","DOIUrl":null,"url":null,"abstract":"<div><div>The growing demand for neuromorphic computing architectures that mimic biological information processing has driven extensive research on optoelectronic synapses with multimodal neuromodulation capabilities. In this study, BaTiO<sub>3</sub>/TiO<sub>2</sub> optoelectronic synaptic devices with high non-volatile memory characteristics were constructed by interfacial energy band engineering. This heterojunction synaptic device achieves a 1350 % enhancement in relaxation time (<em>τ</em><sub><em>2</em></sub> = 84.14 s) compared to conventional BaTiO<sub>3</sub> device (<em>τ</em><sub><em>2</em></sub> = 6.21 s). Moreover, short-term to long-term memory conversion and the cognitive process of “learning experience” are achieved by adjusting light pulse parameters. Through further investigation, a synergistic ferroelectric polarization strategy is proposed, demonstrating that downward polarization extends <em>τ</em><sub><em>2</em></sub> to 202.93 s, with image retention time exceeding 4800 s. The synaptic device demonstrates biological-level energy efficiency (10.45 fJ) while achieving 97.5 % and 89.05 % recognition accuracy on MNIST and Fashion-MNIST datasets, respectively, through convolutional neural networks. This work not only exhibits the application prospect of ferroelectric semiconductor-based heterojunction in artificial optoelectronic synapse but also provides new ideas for the design and application of multimodal neuromorphic devices.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"700 ","pages":"Article 138398"},"PeriodicalIF":9.4000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979725017898","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The growing demand for neuromorphic computing architectures that mimic biological information processing has driven extensive research on optoelectronic synapses with multimodal neuromodulation capabilities. In this study, BaTiO3/TiO2 optoelectronic synaptic devices with high non-volatile memory characteristics were constructed by interfacial energy band engineering. This heterojunction synaptic device achieves a 1350 % enhancement in relaxation time (τ2 = 84.14 s) compared to conventional BaTiO3 device (τ2 = 6.21 s). Moreover, short-term to long-term memory conversion and the cognitive process of “learning experience” are achieved by adjusting light pulse parameters. Through further investigation, a synergistic ferroelectric polarization strategy is proposed, demonstrating that downward polarization extends τ2 to 202.93 s, with image retention time exceeding 4800 s. The synaptic device demonstrates biological-level energy efficiency (10.45 fJ) while achieving 97.5 % and 89.05 % recognition accuracy on MNIST and Fashion-MNIST datasets, respectively, through convolutional neural networks. This work not only exhibits the application prospect of ferroelectric semiconductor-based heterojunction in artificial optoelectronic synapse but also provides new ideas for the design and application of multimodal neuromorphic devices.

Abstract Image

基于BaTiO3/TiO2异质结的铁电极化调制光电突触用于非易失性视觉记忆
对模拟生物信息处理的神经形态计算架构日益增长的需求推动了对具有多模态神经调节能力的光电突触的广泛研究。本研究采用界面能带工程技术,构建了具有高非易失性存储特性的BaTiO3/TiO2光电突触器件。该异质结突触器件的弛豫时间(τ2 = 84.14 s)比传统的BaTiO3器件(τ2 = 6.21 s)提高了1350%。通过调节光脉冲参数,实现短时记忆到长时记忆的转换和“学习经验”的认知过程。通过进一步研究,提出了一种协同极化策略,表明向下极化的τ2扩展到202.93 s,图像保持时间超过4800 s。该突触装置具有生物水平的能量效率(10.45 fJ),同时通过卷积神经网络在MNIST和Fashion-MNIST数据集上分别达到97.5%和89.05%的识别准确率。这项工作不仅展示了铁电半导体异质结在人工光电突触中的应用前景,而且为多模态神经形态器件的设计和应用提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信