{"title":"On the fractionation of lignin oligomers by stepwise gradient reversed-phase liquid chromatography","authors":"","doi":"10.1016/j.chroma.2024.465458","DOIUrl":"10.1016/j.chroma.2024.465458","url":null,"abstract":"<div><div>With the increased interest in lignin valorization, the analytical challenge to separate a complex mixture of a vast number of phenolics has made chromatography an indispensable step in lignin analysis. High-resolution separations, such as gas chromatography, reversed-phase liquid chromatography and supercritical fluid chromatography have typically been targeting low-molecular-weight compounds, while larger lignin oligomers have received less attention. These compounds have proven to be difficult to separate due to the inherent complexity of the high-molecular-weight fraction of lignins, in fact, even high-resolving linear reversed-phase gradients elute them as one wide zone. To tackle this, in this study we show that a crude fractionation of lignin oligomers can be achieved by applying stepwise reversed-phase gradients. A commonly employed reversed-phase system with water:acetonitrile mobile phase is evaluated for this task. Special attention was devoted to uncovering the molecular level explanation of the retention phenomenon. Our results indicate that separation is mainly governed by reversed-phase retention phenomena without any major exclusion or viscosity-related effects, shown by great fits to linear retention models (<em>R</em><sup>2</sup><sub>avg</sub> = 0.9599 for five different oligomers) and apparent differences in retentivity between different stationary phases. The influence of the gradient shape was demonstrated by the comparison of stepwise gradients with different number and frequency of steps, leading to the conclusion that gradients with a low number of steps yield fewer, but better resolved fractions, while finer multi-step gradients can be used to distinguish more fractions.</div></div>","PeriodicalId":347,"journal":{"name":"Journal of Chromatography A","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142530501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Pore structure reconstruction to reveal the adsorption capacity limitation of current oligo-dT resins and guide new resin design","authors":"","doi":"10.1016/j.chroma.2024.465454","DOIUrl":"10.1016/j.chroma.2024.465454","url":null,"abstract":"<div><div>In-depth knowledge of the pore structure of chromatographic resins is instrumental for better mechanistic understanding of adsorption performance, which can be translated into strategies to guide the design of new resins. Aiming to reveal the underlying reasons of low mRNA adsorption capacities of commercial oligo-dT resins, three-dimensional (3D) pore structure reconstruction was applied to relate key pore properties to the adsorption performance. The static 3D pore analysis revealed that the amount and connectivity of the accessible pores for 100 nm-sized mRNA reduced by over 90% and 46% compared with initial pore structure of resins, respectively, which led to discontinuous transport paths for mRNA. The dynamic simulations revealed that the strong hindrance of the firstly bound mRNA to the following mRNA molecules led to less than 10% of mRNA being able to penetrate into the resins with a depth of only 1–2 μm. Based on the digital material model, a virtual nanofiber-based macroporous resin was designed to explore its potential. Simulation results demonstrated that due to large pores and high connectivity, the new resin could allow over 91% of mRNA diffusion into the resin interior, showing great potential to improve the adsorption capacity of mRNA. This work provided a new method to evaluate the limitations of commercial oligo-dT resins and obtained some valuable guidance for the structure design of next-generation resins.</div></div>","PeriodicalId":347,"journal":{"name":"Journal of Chromatography A","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142530617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Evaluating the detection of barbiturates in dried blood spots: A comparative analysis using gas chromatography-mass spectrometry, gas chromatography-tandem mass spectrometry, and liquid chromatography-tandem mass spectrometry with different extraction methods","authors":"","doi":"10.1016/j.chroma.2024.465434","DOIUrl":"10.1016/j.chroma.2024.465434","url":null,"abstract":"<div><div>Rapid and accurate characterization and quantitation of blood barbiturates and their combination drugs are very important for the clinical treatment of acute barbiturate poisoning. A comparison of dried blood spot (DBS) and traditional liquid-liquid extraction (LLE) in the pre-treatment stage, as well as a comparison of gas chromatography-mass spectrometry (GC–MS), gas chromatography-tandem mass spectrometry (GC–MS/MS), and liquid chromatography-tandem mass spectrometry (LC-MS/MS) as instrumental analysis methods, revealed differences in the analysis results of barbiturates and their combination drugs under different conditions. Based on these findings, we introduce a DBS-GC–MS/MS method. The developed and validated method showed good selectivity, sensitivity (LOD: 0.1 μg mL<sup>−1</sup>, LOQ: 0.2 μg mL<sup>−1</sup>), linearity (R<sup>2</sup>>0.9992), trueness (<15 %, except for carbamazepine, at 29.4 %), and precision (<15 %). Recovery was also good for most target compounds, but significant matrix effects were evident. Compared with the LLE method, the DBS method has the benefits of easy sample collection, storage, and transport, as well as simple pre-treatment and reduced reagent and energy consumption. Compared to LC-MS/MS, GC–MS/MS requires no switching between positive and negative ion modes and uses the MRM detection mode, meaning that more information about the sample compounds can be obtained in less analysis time. Using actual sample analysis, we have demonstrated the advantages of the DBS-GC–MS/MS method for the qualitative and quantitative analysis of barbiturates and poisoning events due to combinations of these drugs. Comparison of the three instruments and the two treatment methods revealed their analysis characteristics. From the perspective of practical application, the broad practical value and advantages of DBS should be embraced in more applications, and future analytical laboratory development should continue to recognize GC–MS/MS as a useful supplement to LC-MS/MS.</div></div>","PeriodicalId":347,"journal":{"name":"Journal of Chromatography A","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142542575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comprehensive chromatographic profiling and structural analysis of key anticoagulant components in enoxaparin","authors":"","doi":"10.1016/j.chroma.2024.465457","DOIUrl":"10.1016/j.chroma.2024.465457","url":null,"abstract":"<div><div>Heparin is the most widely used anticoagulant in clinical practice, with enoxaparin being one of the most important low molecular weight heparins (LMWHs). In this study, an antithrombin III (ATIII) affinity column was used. Enoxaparin and its oligosaccharides of varying sizes, prepared using preparative size exclusion chromatography (SEC), were fractionated through the ATIII affinity column. The different affinity fractions from each oligosaccharide size were profiled using strong anion exchange (SAX) chromatography. Each peak was automatically transferred to an SEC column for desalting prior to mass spectrometry (MS) analysis, which enabled structural identification using a multiple heart-cut (MHC) 2D LC-MS system (SAX-SEC-MS). The high-affinity fraction from enoxaparin was further analyzed using the MHC 2D LC system (SEC-SAX). SAX profiles of the high-affinity oligosaccharides, prepared by both size and affinity fractionation, were consistent with those obtained by direct SEC-SAX analysis. The possible sequences of several high-affinity hexasaccharides and the domain compositions of high-affinity octa- and decasaccharides in enoxaparin were further elucidated by disaccharide analysis after manual collection of the oligosaccharides. This work advances the understanding of enoxaparin's structural features and offers a potential approach to improve the quality of enoxaparin, as well as to identify key structural motifs in heparin/LMWHs that contribute to protein binding.</div></div>","PeriodicalId":347,"journal":{"name":"Journal of Chromatography A","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142492114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Implementation of multiobjective decision-making algorithms and image analysis in HPTLC-guided extraction optimization of natural products","authors":"","doi":"10.1016/j.chroma.2024.465443","DOIUrl":"10.1016/j.chroma.2024.465443","url":null,"abstract":"<div><div>A new, efficient, and low-cost approach for monitoring extraction optimization was proposed based on high-performance thin-layer chromatography (HPTLC) coupled with digital image analysis. Since HPTLC produces rich chromatographic signals corresponding to various analytes which may be differently affected by extraction conditions, four multicriteria decision-making (MCDM) techniques were compared for their ability to aggregate multiple chromatographic responses: Derringer's desirability approach, Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS), Preference Ranking Organization Method for Enrichment Evaluations (PROMETHEE-2), and the Sum of ranking differences (SRD). Ultrasound-assisted extraction (UAE) of green tea leaves with ethanol-water mixtures was used as a model system. The amount of ethanol and extraction time were varied according to the central composite design. Ranking eleven extracts by Derringer's desirability approach, TOPSIS, and PROMETHEE-2 showed the same results. SRD analysis yielded slightly different results from previous methods. Response surface models (RSM) based on the previous three MCDM approaches demonstrated that extraction conditions with moderate amounts of ethanol (73%) and extraction times (46 min) lead to optimal chromatographic profiles. RSM optimization performed on individual peaks, tentatively corresponding to rutin, chlorophyll, and gallic acid, led to different results, which justified the use of MCDM algorithms for aggregation of multiple responses. Aside from natural products, the proposed approach has the potential to be implemented in various extraction optimizations.</div></div>","PeriodicalId":347,"journal":{"name":"Journal of Chromatography A","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142530499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exploring electromembrane extraction coupled to fast LC-MS/MS as a high-throughput platform for determination of 12 polar endogenous metabolites in human plasma","authors":"","doi":"10.1016/j.chroma.2024.465451","DOIUrl":"10.1016/j.chroma.2024.465451","url":null,"abstract":"<div><div>High efficiency in the analytical workflow, including fast sample preparation and LC-MS/MS analysis, is an advantage when analyzing a high number of samples. It can however be a challenge when determining polar analytes in complex, biological samples, and one must expect to make a compromise between a simple sample preparation followed by a long chromatographic separation, or vice versa, to limit matrix effects. In this proof-of-concept work, a one-step 96-well (parallel extraction) electromembrane extraction (EME) method was coupled to flow injection-MS/MS of 0.7 min per sample, allowing a very high-throughput analysis of 12 polar, endogenous metabolites from unprecipitated plasma of limited dilution. The throughput of the EME method matched the subsequent analysis. Recoveries ranged from 6 to 93 %, and repeatability and linearity were 2–15 % and R<sup>2</sup> ≥ 0.9949, respectively, for all but two compounds. Matrix effects were approximately 50 % after EME and varied <11 % between 6 plasma donors, which represented a major improvement relative to a simple protein precipitation where signals were entirely suppressed. The work demonstrates a potential for EME coupled to flow injection-MS/MS to serve as a high-throughput platform for bioanalysis, not just of polar analytes, but also hydrophobic drugs both basic and acidic.</div></div>","PeriodicalId":347,"journal":{"name":"Journal of Chromatography A","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142530500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Integrated multidimensional chromatography on preparative scale for oligonucleotides purification","authors":"","doi":"10.1016/j.chroma.2024.465440","DOIUrl":"10.1016/j.chroma.2024.465440","url":null,"abstract":"<div><div>Therapeutic oligonucleotides represent a recent breakthrough in the pharmaceutical industry due to their ability to regulate gene expression with great specificity. This aspect allows treatment of a wide range of diseases. However, since oligonucleotides are used for therapeutic purposes, the Active Pharmaceutical Ingredient (API) must fulfill strict purity levels which require intensive purification steps. For oligonucleotides, and biomolecules in general, preparative liquid chromatography is the technique of choice to perform large scale purifications, typically in batch mode, i.e. using a single column. Specifically, since ONs are mainly large, hydrophilic and charged molecules, Anion Exchange chromatography (AEX) and Ion Pair Reversed Phase chromatography (IP-RP) are the preferred chromatographic modes for their downstream processing. Nevertheless, these approaches suffer from a purity-yield trade-off, and for this reason, more than one purification step is usually required. The two chromatographic modes can therefore be used consequently to remove different groups of impurities, thanks to their orthogonality.</div><div>In this work, a multidimensional and orthogonal approach on a (semi)preparative scale, namely “Integrated Batch process”, was applied for the purification of a single-stranded DNA oligonucleotide. This process combines two chromatographic steps without any hold step, operator intervention or sampling of the first step. The performance parameters of the Integrated Batch were compared to those obtained in the single batch runs under different experimental conditions (chromatographic mode, eluent systems), showing the potential of this integrated approach. This proof-of-concept study illustrates how this technique can considerably reduce overall production time and how it allows to increase the robustness and reproducibility of the method, since the process is highly automated.</div></div>","PeriodicalId":347,"journal":{"name":"Journal of Chromatography A","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142445704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cyano-modified molecular cage silica gel stationary phase: Multi-functional chromatographic performance by high-performance liquid chromatography","authors":"","doi":"10.1016/j.chroma.2024.465441","DOIUrl":"10.1016/j.chroma.2024.465441","url":null,"abstract":"<div><div>This study successfully prepared different loading levels of cyano-functionalized RCC3 molecular cage silica gel stationary phase (RCC3-CN@SiO<sub>2</sub>) through aldehyde-amine condensation reaction and subsequent modification strategies. Fourier transform infrared spectroscopy, thermogravimetric analysis, nitrogen adsorption-desorption, and scanning electron microscopy confirmed the successful synthesis of RCC3-CN@SiO<sub>2</sub> chromatographic stationary phase. The research demonstrates that due to hydrophobic/hydrophilic interactions, π-π interactions, hydrogen bonding, and size-selective porous structure, the stationary phase effectively separates moderately polar and weakly polar compounds in reversed-phase liquid chromatography (RPLC) mode, exhibiting hydrophobic selectivity comparable to the commercial DaisoC18-RP columns. Additionally, the tertiary amine and cyanogen groups on the molecular cage surface enhance the interaction with polar compounds, successfully separating nucleosides, sulfonamides, amino acids, and sugars in hydrophilic interaction chromatography (HILIC) mode. Further applications in the separation analysis of acidic drugs, alkaline drugs, cinnamic acid natural products, and chiral compounds demonstrate the multifunctional chromatographic capabilities for diverse compound types. Compared to Unitary Diol commercial columns, the prepared stationary phase showed significant advantages in wide polarity range separation performance. Moreover, through nucleoside compound separation mode switching analysis, RCC3-CN@SiO<sub>2</sub> stationary phase further validates its favorable performance in both RPLC and HILIC modes, demonstrating extensive potential applications in the field of analytical chemistry. Importantly, the stationary phase exhibits efficient separation of nucleoside compounds in pure water systems, aligning with the principles of green analysis.</div></div>","PeriodicalId":347,"journal":{"name":"Journal of Chromatography A","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142454796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Application of magnetic AlFu MOF nanocomposite for the extraction and preconcentration of some pesticides from different distillates","authors":"","doi":"10.1016/j.chroma.2024.465436","DOIUrl":"10.1016/j.chroma.2024.465436","url":null,"abstract":"<div><div>This research used a magnetic AlFu nano-metal-organic framework as an adsorbent for the first time. This approach extracts and preconcentrates eight pesticides from various distillates through a two-step process: magnetic dispersive micro solid phase extraction and dispersive liquid-liquid microextraction. Initially, the nanocomposite is dispersed into a sample solution containing the pesticides and Na<sub>2</sub>SO<sub>4</sub>. The target pesticides are then adsorbed onto the nanocomposite, which is subsequently isolated from the aqueous phase using an external magnetic field. Acetonitrile is used to elute the adsorbed analytes pesticides from the nanocomposite surface. The resulting acetonitrile extract, containing the concentrated pesticides, is then mixed with a tiny amount of another solvent and injected into a NaCl solution. Centrifugation allows the organic phase, enriched with the pesticides, to settle down. An aliquot of this organic layer is then analyzed using a gas chromatography-flame ionization detector. Optimization of the procedure led to favorable performance, including good extraction recovery of the pesticides (68–98 %), significant enrichment (enrichment factors of 340–489), a wide range of detectable concentrations (2.90–1400 µg <em>L</em><sup>−1</sup>), and low detection (0.15–0.88 µg <em>L</em><sup>−1</sup>) and quantification limits. (0.49–2.90 µg <em>L</em><sup>−1</sup>)</div></div>","PeriodicalId":347,"journal":{"name":"Journal of Chromatography A","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142446044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Evaluating the reliability of solid phase extraction techniques for hydrocarbon analysis by GC–MS","authors":"","doi":"10.1016/j.chroma.2024.465435","DOIUrl":"10.1016/j.chroma.2024.465435","url":null,"abstract":"<div><div>Saturate and aromatic compounds are essential in the petroleum industry for assessing the thermal maturity of source rocks and oils, which is critical for basin modeling and sweet-spot mapping. These compounds also play a role in environmental applications, such as oil spill fingerprinting and biogeochemistry. However, the analysis of these compounds by gas chromatography-mass spectrometry (GC–MS) requires meticulous and time-consuming separation processes. Traditional methods like normal-phase liquid column chromatography (LCC) involve large volumes of harmful solvents. This study evaluates the effectiveness of five different sorbents using solid-phase extraction (SPE) techniques—neutral Si, SiOH, Ag-ion, neutral Al, and Ag-ion mixed with activated silica—compared to LCC. The goal was to discern differences in peak resolution, concentration, and isomer ratios of saturate and aromatic compounds for thermal maturity and source rock assessments. The results show that SiOH, neutral Si, and neutral Al do not fully separate aromatic compounds from the saturate fraction, sometimes leaving 40–100% of aromatics within the saturate fraction. Ag-ion mixed with activated silica provided the best separation, resulting in up to 23 times higher aromatic concentration than SiOH. This method is more reliable for quantifying both saturate and aromatic compounds, increases the efficiency of hydrocarbon evaluations, and reduces solvent consumption by 63%, offering a more sustainable approach to hydrocarbon analysis.</div></div>","PeriodicalId":347,"journal":{"name":"Journal of Chromatography A","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142454797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}