{"title":"Exploring the utility of complementary separations in liquid chromatography.","authors":"Leon E Niezen, Deirdre Cabooter, Gert Desmet","doi":"10.1016/j.chroma.2024.465469","DOIUrl":"https://doi.org/10.1016/j.chroma.2024.465469","url":null,"abstract":"<p><p>An alternative strategy is explored for the separation of samples by liquid chromatography (LC). Unlike traditional approaches that aim to resolve all components in a given sample within a single LC separation, the proposed strategy uses two or more distinct separations carried out with a different gradient program and/or using different separation chemistries i.e., a different set of mobile and stationary phase. This set of complementary incomplete separations (CIS) is selected such that each component is at least fully resolved once, meaning the most critical pairs of each individual separation can be left unseparated. This allows for a significant time saving per separation. To investigate whether such an approach can lead to overall shorter analysis times than is possible with the fastest single-run gradient separation, a comprehensive in silico study covering a statistically significant number of samples is undertaken. The investigation shows that, for the presently considered sample sets and chemistries, CIS has a substantially higher probability, about two times greater for the simplest samples considered in this work and as much as 30 times greater for more complex samples, to fully resolve an unknown sample compared to a single gradient separation. Comparing separation speeds, the CIS approach can achieve complete sample resolution on average approximately four times faster than a single separation. Our findings thus demonstrate the potential of CIS in enhancing separation efficiency and offer insights regarding their use for solving analytical challenges.</p>","PeriodicalId":347,"journal":{"name":"Journal of Chromatography A","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142563886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Carboxyl hybrid monolithic column in-tube solid-phase microextraction coupled with UPLC-QTRAP MS/MS for the determination of amphetamine-type stimulants","authors":"","doi":"10.1016/j.chroma.2024.465464","DOIUrl":"10.1016/j.chroma.2024.465464","url":null,"abstract":"<div><div>A carboxyl functionalized organic-inorganic hybrid monolithic column (TMOS-<em>co</em>-CES) was applied as in-tube solid-phase microextraction (SPME) sorbent combining with ultra-performance liquid chromatography-triple quadrupole/linear ion trap mass spectrometer for separation and analyzation of seven typical amphetamine-type stimulants (ATSs), including amphetamine (AM), methamphetamine (MAM), cathinone, methcathinone, 3,4-methylenedioxyamphetamine, 3,4-methylenedioxymethamphetamine and 3,4-methylenedioxyethylamphetamine. The application potential of TMOS-<em>co</em>-CES material to ATSs was preliminarily confirmed by computational simulation by using cathinone as a representative. The influences of various SPME parameters and analytical performance were investigated systematically. As matched with the results of computational simulation, TMOS-<em>co</em>-CES column could capture ATSs under milder near neutral pH condition with high extraction efficiency basing on the adsorption mechanism explained as a mixed mode of electrostatic and hydrophobic interactions. Seven target trace ATSs in spiked sewage, pond water and urine could be rapidly and conveniently separated and enriched by the proposed TMOS-<em>co</em>-CES in-tube SPME method under the optimized conditions with good accuracy, repeatability and resistance to matrix interference. Moreover, AM and MAM had been successfully detected in real urines of suspected drug abusers by TMOS-<em>co</em>-CES in-tube SPME method, which indicated that the proposed method had good application feasibility for drug monitoring. The mild extraction condition and ideal method performance further made the TMOS-<em>co</em>-CES in-tube SPME method more potential in applications for forensic analysis and drug abuse.</div></div>","PeriodicalId":347,"journal":{"name":"Journal of Chromatography A","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142520582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Separation of nucleobases, nucleosides, nucleotides and oligonucleotides by hydrophilic interaction liquid chromatography (HILIC): A state-of-the-art review.","authors":"Yong Guo","doi":"10.1016/j.chroma.2024.465467","DOIUrl":"https://doi.org/10.1016/j.chroma.2024.465467","url":null,"abstract":"<p><p>The polar nature of nucleobases, nucleosides and nucleotides makes hydrophilic interaction chromatography (HILIC) a good choice of technology for separation. Both naturally occurring and modified nucleosides and nucleotides have been successfully separated in HILIC. A wide range of stationary phases with different retention and selectivity are suitable for the separation of nucleobases, nucleosides and nucleotides; and a sufficient knowledge base is also available to guide method development. Although oligonucleotides are significantly different from nucleotides in terms of polarity and charges, HILIC has been shown to be a viable alternative to ion-pairing reversed-phase liquid chromatography (IP-RPLC). Only a few polar stationary phases have been shown to provide satisfactory performance; however, the requirements for the mobile phase composition including organic solvent, mobile phase pH and salt concentration are sufficiently understood. This review provides a comprehensive evaluation of the chromatographic conditions with a historical perspective on adopting and developing HILIC for the separation of nucleobases, nucleosides, nucleotides and oligonucleotides. The areas for more research and potential directions for future development activities are identified and discussed.</p>","PeriodicalId":347,"journal":{"name":"Journal of Chromatography A","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142563905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An integrated strategy for deciphering quality markers of Terminaliae Belliricae Fructus based on a three-dimensional characteristic model","authors":"","doi":"10.1016/j.chroma.2024.465465","DOIUrl":"10.1016/j.chroma.2024.465465","url":null,"abstract":"<div><div><em>Terminalia bellirica</em> (Gaertn.) Roxb. is an ethnomedicinal plant that has been utilized in Tibetan and traditional Chinese medicine (TCM). Nevertheless, its quality standard officially listed in the <em>Chinese Pharmacopoeia</em> does not include any content determination of the indicator components of <em>Terminaliae Belliricae Fructus</em>, which constrains the effective quality evaluation of medicinal material and related products. In this paper, a three-dimensional “content-pharmacokinetics-pharmacology” network strategy was developed to identify the quality markers (Q-markers) of <em>Terminaliae Belliricae Fructus</em> in terms of “measurability”, “traceability” and “effectiveness”. Chromatographic fingerprint analysis was performed to outline its chemical contour, and identify the differential components of 17 batches of <em>Terminaliae Belliricae Fructus</em> combined with multivariate statistics analysis and UPLC-QTOF-MS analysis. Serum pharmacochemistry analysis was implemented on rats, and 25 prototype components absorbed into the blood were identified. By network pharmacology analysis, a component-disease-target-pathway network was constructed, thus validating the effectiveness of the chemical components of <em>Terminaliae Belliricae Fructus</em>. Afterwards, the above screened candidate components were put into construction of three-dimensional \"radar chart\". According to the calculated regression area (<span><math><mrow><mi>R</mi><mi>A</mi></mrow></math></span>) and coefficient of variation (<span><math><mrow><mi>C</mi><mi>V</mi></mrow></math></span>) values, the potential Q-markers was determined, followed by “specificity” evaluation. Ultimately, ellagic acid (EA), chebulagic acid (CHA), gallic acid (GA), chebulinic acid (CA), corilagin (CO) and chebulanin (CH) were specified as the Q-markers of <em>Terminaliae Belliricae Fructus</em>. Owing to high content, good pharmacokinetic property, high pharmacological activities and specificity. The screened Q-markers could offer a scientific foundation for the quality control of <em>Terminaliae Belliricae Fructus</em>, and the proposed strategy is demonstrated to be reliable and feasible for deciphering Q-markers of TCM.</div></div>","PeriodicalId":347,"journal":{"name":"Journal of Chromatography A","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142542573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Highly pure measles virus generated by combination of salt-active nuclease treatment and heparin affinity chromatography.","authors":"Viktoria Mayer, Florian Steiner, Alois Jungbauer, Patricia Pereira Aguilar","doi":"10.1016/j.chroma.2024.465470","DOIUrl":"https://doi.org/10.1016/j.chroma.2024.465470","url":null,"abstract":"<p><p>Highly purified virus preparations are essential for accurate activity and potency determination. This requires simple and efficient purification methods, especially in the early stages of research and development. While heparin affinity chromatography has been already successfully used for the purification of several enveloped viruses and virus-like particles, we extended its use to purification of very sensitive measles virus. The performance of heparin and heparin-like affinity chromatography was evaluated for the purification of recombinant measles virus, a large and labile enveloped virus used as vaccine or cancer therapy. Since DNA, particularly in the form of chromatin is a critical impurity in enveloped virus preparations, the effect of integration of an endonuclease (Benzonase® or M-SAN) treatment prior to chromatography was also investigated. Both, Capto™ DeVirS (heparin-like) and Capto™ Heparin were able to capture measles viruses directly from clarified cell culture supernatant. Despite capturing 100 % of infectious measles virus, low recovery (8 %) was observed for Capto™ DeVirS. For Capto™ Heparin recoveries up to 85 % were observed. The combination of M-SAN with Capto™ Heparin enabled the production of highly purified measles virus with a yield of 62 % and a final purity of 10.2 ng dsDNA per dose (1 × 10<sup>5</sup>), outperforming the processes without endonuclease treatment with a yield of 18 %, and a purity of 66.7 ng dsDNA/dose or using Benzonase® with a yield of 38 % and a purity of 21.2 ng dsDNA/dose. As the developed method is simple and scalable it could also be integrated in a downstream process train for measles virus manufacturing.</p>","PeriodicalId":347,"journal":{"name":"Journal of Chromatography A","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142563892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Constructing perfluorinated UiO-67 for enrichment of polycyclic aromatic hydrocarbons in seawater and seabed sediments","authors":"","doi":"10.1016/j.chroma.2024.465463","DOIUrl":"10.1016/j.chroma.2024.465463","url":null,"abstract":"<div><div>To investigate the ocean contamination caused by polycyclic aromatic hydrocarbons (PAHs), UiO-67/perfluorooctanoic acid (UiO-67/PFOA) was synthesized through solvent-assisted ligand incorporation method. The UiO-67/PFOA was then served as an adsorbent in headspace solid-phase microextraction (HS-SPME) technology for collecting and concentrating trace PAHs. The addition of the PFOA improved the hydrophobicity and stability of the UiO-67/PFOA coating, and the C-F functional group in UiO-67/PFOA could form the pseudo hydrogen bonding with the C<img>H on the benzene ring of PAHs, which endowed the UiO-67/PFOA with 1.60–4.63 times enrichment performance for PAHs than UiO-67. Under optimal conditions, the wide linear ranges of PAHs (0.01–20 ng·mL<sup>−1</sup>) with good coefficients of determination (R<sup>2</sup> ≥ 0.9950) and low limits of detection (LODs, 0.003–0.008 ng·mL<sup>−1</sup>) were obtained. The recoveries of five PAHs from spiked seawater and seabed sediment by the developed method ranged from 81.14 % to 116.0 % with satisfactory results. This work provided a good adsorbent for the enrichment of trace PAHs in complicated environments and a new approach for the subsequent synthesis of adsorbents with good enrichment performance.</div></div>","PeriodicalId":347,"journal":{"name":"Journal of Chromatography A","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142530497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advances and challenges in non-targeted analysis: An insight into sample preparation and detection by liquid chromatography-mass spectrometry","authors":"","doi":"10.1016/j.chroma.2024.465459","DOIUrl":"10.1016/j.chroma.2024.465459","url":null,"abstract":"<div><div>Unknown impurities, metabolites and harmful pollutants present in pharmaceutical products, biological and environmental samples, respectively are of high concern in terms of their detection and quantification. The targeted analysis aims to quantify known chemical entities, but it lacks the ability to identify unknown components present in a sample. Non-targeted analysis is an analytical approach that can be made applicable to various disciplines of science to effectively search for unknown chemical, biological, or environmental entities that can answer various baffling mysteries of research. It employs various high-end analytical techniques that can specifically screen out multiple unknown compounds from complex mixtures. Non-targeted analysis is also applicable for complex studies such as metabolomics to search unidentified metabolites of new chemical entities. This review critically discusses the current advancements in non-targeted analysis related to the analysis of pharmaceutical, biological, and environmental samples. Various steps like sample collection, handling, preparation, extraction, its analysis using advanced techniques like high-resolution mass spectrometry, liquid chromatography mass spectrometry, and lastly interpretation of the huge amounts of complex data obtained upon analysis of complex matrices have been discussed broadly in this article. Besides the advantages of non-targeted analysis over targeted analysis, limitations, bioinformatics tools, sources of error, and research gaps have been critically analyzed.</div></div>","PeriodicalId":347,"journal":{"name":"Journal of Chromatography A","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142542572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Determination of particle number concentration for biological particles using AF4-MALS: Dependencies on light scattering model and refractive index","authors":"","doi":"10.1016/j.chroma.2024.465460","DOIUrl":"10.1016/j.chroma.2024.465460","url":null,"abstract":"<div><div>Determining accurate counts and size distributions for biological particles (bioparticles) is crucial in wide-ranging fields, but current methods to this end are susceptible to bias from polydispersity in size. This bias can be mitigated by incorporating a separation step prior to characterization. For this reason, asymmetrical flow field-flow fractionation (AF4) with on-line multiangle light scattering (MALS) has become an important platform for determining particle size. AF4-MALS has also been increasingly used to report particle concentration, particularly for complex biological particles, yet the impact of light scattering models and particle refractive indices (RI) have not been quantitatively evaluated. Here, we develop an analysis workflow using AF4-MALS to simultaneously separate and determine particles sizes and concentrations. The impacts of the MALS particle counting model used to process data and the chosen RI value(s) on particle counts are systematically assessed for polystyrene latex (PSL) particles and bacterial outer membrane vesicles (OMVs) in the 20–500 nm size range. Across spherical models, PSL and OMV particle counts varied up to 13 % or 200 %, respectively. For the coated-sphere model used in the analysis of OMV samples, the sphere RI value greatly impacts particle counts. As the sphere RI value approaches the RI of the suspending medium, the model becomes increasingly sensitive to the light scattering signal-to-noise ratio ultimately causing erroneous particle counts. Overall, this work establishes the importance of selecting appropriate MALS models and RI values for bioparticles to obtain accurate counts and provides an AF4-MALS method to separate, enumerate, and size polydisperse bioparticles.</div></div>","PeriodicalId":347,"journal":{"name":"Journal of Chromatography A","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142542574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the fractionation of lignin oligomers by stepwise gradient reversed-phase liquid chromatography","authors":"","doi":"10.1016/j.chroma.2024.465458","DOIUrl":"10.1016/j.chroma.2024.465458","url":null,"abstract":"<div><div>With the increased interest in lignin valorization, the analytical challenge to separate a complex mixture of a vast number of phenolics has made chromatography an indispensable step in lignin analysis. High-resolution separations, such as gas chromatography, reversed-phase liquid chromatography and supercritical fluid chromatography have typically been targeting low-molecular-weight compounds, while larger lignin oligomers have received less attention. These compounds have proven to be difficult to separate due to the inherent complexity of the high-molecular-weight fraction of lignins, in fact, even high-resolving linear reversed-phase gradients elute them as one wide zone. To tackle this, in this study we show that a crude fractionation of lignin oligomers can be achieved by applying stepwise reversed-phase gradients. A commonly employed reversed-phase system with water:acetonitrile mobile phase is evaluated for this task. Special attention was devoted to uncovering the molecular level explanation of the retention phenomenon. Our results indicate that separation is mainly governed by reversed-phase retention phenomena without any major exclusion or viscosity-related effects, shown by great fits to linear retention models (<em>R</em><sup>2</sup><sub>avg</sub> = 0.9599 for five different oligomers) and apparent differences in retentivity between different stationary phases. The influence of the gradient shape was demonstrated by the comparison of stepwise gradients with different number and frequency of steps, leading to the conclusion that gradients with a low number of steps yield fewer, but better resolved fractions, while finer multi-step gradients can be used to distinguish more fractions.</div></div>","PeriodicalId":347,"journal":{"name":"Journal of Chromatography A","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142530501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Pore structure reconstruction to reveal the adsorption capacity limitation of current oligo-dT resins and guide new resin design","authors":"","doi":"10.1016/j.chroma.2024.465454","DOIUrl":"10.1016/j.chroma.2024.465454","url":null,"abstract":"<div><div>In-depth knowledge of the pore structure of chromatographic resins is instrumental for better mechanistic understanding of adsorption performance, which can be translated into strategies to guide the design of new resins. Aiming to reveal the underlying reasons of low mRNA adsorption capacities of commercial oligo-dT resins, three-dimensional (3D) pore structure reconstruction was applied to relate key pore properties to the adsorption performance. The static 3D pore analysis revealed that the amount and connectivity of the accessible pores for 100 nm-sized mRNA reduced by over 90% and 46% compared with initial pore structure of resins, respectively, which led to discontinuous transport paths for mRNA. The dynamic simulations revealed that the strong hindrance of the firstly bound mRNA to the following mRNA molecules led to less than 10% of mRNA being able to penetrate into the resins with a depth of only 1–2 μm. Based on the digital material model, a virtual nanofiber-based macroporous resin was designed to explore its potential. Simulation results demonstrated that due to large pores and high connectivity, the new resin could allow over 91% of mRNA diffusion into the resin interior, showing great potential to improve the adsorption capacity of mRNA. This work provided a new method to evaluate the limitations of commercial oligo-dT resins and obtained some valuable guidance for the structure design of next-generation resins.</div></div>","PeriodicalId":347,"journal":{"name":"Journal of Chromatography A","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142530617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}