基于非目标分析图谱和二维卷积神经网络的短毛当归快速准确鉴别分析

IF 3.8 2区 化学 Q1 BIOCHEMICAL RESEARCH METHODS
Yue Huang, Li Jun Tang, Zhuo Ling Yang, Xiang-Zhi Zhang, Bao Qiong Li
{"title":"基于非目标分析图谱和二维卷积神经网络的短毛当归快速准确鉴别分析","authors":"Yue Huang,&nbsp;Li Jun Tang,&nbsp;Zhuo Ling Yang,&nbsp;Xiang-Zhi Zhang,&nbsp;Bao Qiong Li","doi":"10.1016/j.chroma.2025.466014","DOIUrl":null,"url":null,"abstract":"<div><div>This study developed an effective approach for discriminating geographical origins of Duhuo samples using non-targeted UPLC chromatograms and UV-Vis spectrogram images combined with a two-dimensional convolution neural network (2D-CNN). For comparison, four machine learning methods-extreme gradient boosting (XGBoost), random forest (RF), partial least squares discriminant analysis (PLS-DA), and support vector machine (SVM) were applied to analyze UPLC, UV-Vis data matrix, and concentrations of seven target compounds. Enhanced by data augmentation, 2D-CNN demonstrated superior accuracy, with 98.28% accuracy for UV-Vis images and 100% for UPLC images, while traditional machine learning models showed considerable variation across datasets. These results demonstrate the integration of 2D-CNN with UPLC and UV-Vis images enable robustness, accurate and non-destructive analysis for the efficient discrimination of TCM samples. Specifically, UV-Vis spectroscopy provides a convenient method for quick detection. Overall, the employed approach offers a powerful tool for the precise and reliable analysis of herbal medicines.</div></div>","PeriodicalId":347,"journal":{"name":"Journal of Chromatography A","volume":"1753 ","pages":"Article 466014"},"PeriodicalIF":3.8000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast and accurate discrimination analysis of Angelicae Pubescentis Radix using non-targeted analytical profiles images and two-dimensional convolution neural network\",\"authors\":\"Yue Huang,&nbsp;Li Jun Tang,&nbsp;Zhuo Ling Yang,&nbsp;Xiang-Zhi Zhang,&nbsp;Bao Qiong Li\",\"doi\":\"10.1016/j.chroma.2025.466014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study developed an effective approach for discriminating geographical origins of Duhuo samples using non-targeted UPLC chromatograms and UV-Vis spectrogram images combined with a two-dimensional convolution neural network (2D-CNN). For comparison, four machine learning methods-extreme gradient boosting (XGBoost), random forest (RF), partial least squares discriminant analysis (PLS-DA), and support vector machine (SVM) were applied to analyze UPLC, UV-Vis data matrix, and concentrations of seven target compounds. Enhanced by data augmentation, 2D-CNN demonstrated superior accuracy, with 98.28% accuracy for UV-Vis images and 100% for UPLC images, while traditional machine learning models showed considerable variation across datasets. These results demonstrate the integration of 2D-CNN with UPLC and UV-Vis images enable robustness, accurate and non-destructive analysis for the efficient discrimination of TCM samples. Specifically, UV-Vis spectroscopy provides a convenient method for quick detection. Overall, the employed approach offers a powerful tool for the precise and reliable analysis of herbal medicines.</div></div>\",\"PeriodicalId\":347,\"journal\":{\"name\":\"Journal of Chromatography A\",\"volume\":\"1753 \",\"pages\":\"Article 466014\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chromatography A\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021967325003620\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chromatography A","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021967325003620","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用非靶向UPLC色谱图和UV-Vis光谱图结合二维卷积神经网络(2D-CNN),建立了一种有效的鉴别毒活样品地理来源的方法。为了比较,采用极端梯度增强(XGBoost)、随机森林(RF)、偏最小二乘判别分析(PLS-DA)和支持向量机(SVM) 4种机器学习方法对7种目标化合物的UPLC、UV-Vis数据矩阵和浓度进行分析。通过数据增强,2D-CNN显示出卓越的准确性,UV-Vis图像的准确率为98.28%,UPLC图像的准确率为100%,而传统的机器学习模型在数据集之间表现出相当大的差异。这些结果表明,将2D-CNN与UPLC和UV-Vis图像相结合,可以实现对中药样品的鲁棒性、准确性和非破坏性分析。具体来说,紫外可见光谱法为快速检测提供了方便的方法。总的来说,所采用的方法为草药的精确和可靠的分析提供了一个强大的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast and accurate discrimination analysis of Angelicae Pubescentis Radix using non-targeted analytical profiles images and two-dimensional convolution neural network
This study developed an effective approach for discriminating geographical origins of Duhuo samples using non-targeted UPLC chromatograms and UV-Vis spectrogram images combined with a two-dimensional convolution neural network (2D-CNN). For comparison, four machine learning methods-extreme gradient boosting (XGBoost), random forest (RF), partial least squares discriminant analysis (PLS-DA), and support vector machine (SVM) were applied to analyze UPLC, UV-Vis data matrix, and concentrations of seven target compounds. Enhanced by data augmentation, 2D-CNN demonstrated superior accuracy, with 98.28% accuracy for UV-Vis images and 100% for UPLC images, while traditional machine learning models showed considerable variation across datasets. These results demonstrate the integration of 2D-CNN with UPLC and UV-Vis images enable robustness, accurate and non-destructive analysis for the efficient discrimination of TCM samples. Specifically, UV-Vis spectroscopy provides a convenient method for quick detection. Overall, the employed approach offers a powerful tool for the precise and reliable analysis of herbal medicines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chromatography A
Journal of Chromatography A 化学-分析化学
CiteScore
7.90
自引率
14.60%
发文量
742
审稿时长
45 days
期刊介绍: The Journal of Chromatography A provides a forum for the publication of original research and critical reviews on all aspects of fundamental and applied separation science. The scope of the journal includes chromatography and related techniques, electromigration techniques (e.g. electrophoresis, electrochromatography), hyphenated and other multi-dimensional techniques, sample preparation, and detection methods such as mass spectrometry. Contributions consist mainly of research papers dealing with the theory of separation methods, instrumental developments and analytical and preparative applications of general interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信