Energetic Materials Frontiers最新文献

筛选
英文 中文
Stabilizer selection and formulation strategies for enhanced stability of single base nitrocellulose propellants: A review 提高单基硝化纤维推进剂稳定性的稳定剂选择和配方策略:综述
Energetic Materials Frontiers Pub Date : 2024-03-01 DOI: 10.1016/j.enmf.2024.02.007
Siti Nor Ain Rusly , Siti Hasnawati Jamal , Alinda Samsuri , Siti Aminah Mohd Noor , Khoirul Solehah Abdul Rahim
{"title":"Stabilizer selection and formulation strategies for enhanced stability of single base nitrocellulose propellants: A review","authors":"Siti Nor Ain Rusly ,&nbsp;Siti Hasnawati Jamal ,&nbsp;Alinda Samsuri ,&nbsp;Siti Aminah Mohd Noor ,&nbsp;Khoirul Solehah Abdul Rahim","doi":"10.1016/j.enmf.2024.02.007","DOIUrl":"10.1016/j.enmf.2024.02.007","url":null,"abstract":"<div><p>Stabilizers play a crucial role in preventing undesirable decomposition and degradation reactions of propellants, thus ensuring their long-term performance and safe storage. This review highlights recent advancements in stabilizer selection and formulation techniques, aiming to enhance the stability of single base nitrocellulose (SB-NC) propellants. It examines several types of stabilizers for SB-NC propellants, including their reaction mechanisms and effectiveness in preventing degradation reactions of the propellants, as well as the effects of their concentrations, particle sizes, and distributions on the propellants’ stability. Furthermore, it explores innovative approaches such as nano and green stabilizers with improved stability and compatibility. This review also provides insights into methods for evaluating the efficiency and propellant stability of the stabilizers, such as thermal analysis and accelerated aging tests. The findings of this review will assist in developing advanced propellant formulations that meet the growing demand for the applications of NC-based propellants.</p></div>","PeriodicalId":34595,"journal":{"name":"Energetic Materials Frontiers","volume":"5 1","pages":"Pages 52-69"},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666647224000083/pdfft?md5=21d1ad566641843cfe9ee2b3560204e4&pid=1-s2.0-S2666647224000083-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139926589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ferrocene-fullerene dyad as a novel burn rate modifier for propellants 二茂铁-富勒烯二元化合物作为推进剂的新型燃烧速率调节剂
Energetic Materials Frontiers Pub Date : 2024-03-01 DOI: 10.1016/j.enmf.2024.02.001
Shrutika Sriramrao, Parveen Raman, Akash Dhas, Shaibal Banerjee
{"title":"Ferrocene-fullerene dyad as a novel burn rate modifier for propellants","authors":"Shrutika Sriramrao,&nbsp;Parveen Raman,&nbsp;Akash Dhas,&nbsp;Shaibal Banerjee","doi":"10.1016/j.enmf.2024.02.001","DOIUrl":"10.1016/j.enmf.2024.02.001","url":null,"abstract":"<div><p>The burn rate of composite rocket propellants serves as a critical ballistic parameter in the construction of a rocket engine. Due to their large surface areas, carbon-based materials such as carbon nanotubes, graphene, and fullerene have demonstrated promising results as burn rate modifiers (BRMs) for propellants. Unlike their inorganic counterparts, these materials, being combustible, contribute to energy output besides enhancing the burn rate. This study reported a ferrocene-fullerene dyad as a BRM prepared through the thermal decomposition of ammonium perchlorate (AP) in composite solid propellants. By incorporating 0.6 wt% of the dyad, the burn rate of the prepared propellants increased by 70%, accompanied by a rise in their calorific value.</p></div>","PeriodicalId":34595,"journal":{"name":"Energetic Materials Frontiers","volume":"5 1","pages":"Pages 47-51"},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666647224000022/pdfft?md5=bda5e8d19b03995ed91353759857d0d2&pid=1-s2.0-S2666647224000022-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139926595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Story 封面故事
Energetic Materials Frontiers Pub Date : 2024-03-01 DOI: 10.1016/S2666-6472(24)00017-4
{"title":"Cover Story","authors":"","doi":"10.1016/S2666-6472(24)00017-4","DOIUrl":"https://doi.org/10.1016/S2666-6472(24)00017-4","url":null,"abstract":"","PeriodicalId":34595,"journal":{"name":"Energetic Materials Frontiers","volume":"5 1","pages":"Page ii"},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666647224000174/pdfft?md5=6a2bc5a9bf71118a6781998998f95594&pid=1-s2.0-S2666647224000174-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140554709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Auto-ignition of ionic liquid fuels with hydrogen peroxide triggered by copper-containing liquid promoter 含铜液体促进剂引发过氧化氢离子液体燃料自燃
Energetic Materials Frontiers Pub Date : 2024-03-01 DOI: 10.1016/j.enmf.2024.02.006
Si-cheng Liao , Tian-lin Liu , Zhi-yu Zhou , Kang-cai Wang , Qing-hua Zhang
{"title":"Auto-ignition of ionic liquid fuels with hydrogen peroxide triggered by copper-containing liquid promoter","authors":"Si-cheng Liao ,&nbsp;Tian-lin Liu ,&nbsp;Zhi-yu Zhou ,&nbsp;Kang-cai Wang ,&nbsp;Qing-hua Zhang","doi":"10.1016/j.enmf.2024.02.006","DOIUrl":"10.1016/j.enmf.2024.02.006","url":null,"abstract":"<div><p>Research into next-generation propellants with green fuel–oxidizer pairs to replace the currently used highly toxic hydrazine–N<sub>2</sub>O<sub>4</sub> system has attracted widespread attention. Ionic liquids (ILs) and hydrogen peroxide have demonstrated their feasibility as a green fuel and an oxidizer, respectively. However, the realisation of effective auto-ignition is the key problem. In this study, a new strategy to trigger the auto-ignition of ILs fuels with hydrogen peroxide by using a unique copper-containing liquid as the promoter is developed. The copper-containing promoter is designed such that its cationic structure is similar to that of the ILs fuels. Based on the principle of “like dissolves like,” the fuel and promoter can be miscible at any ratio to eventually form a catalytic fuel. In addition, the physicochemical properties (e.g. density, viscosity and decomposition temperature) and performance parameters (e.g. ignition delay time and specific impulse) of the as-prepared catalytic fuel are completely characterised. Owing to their excellent hypergolic performance with a short ignition delay time of 16 ms, in combination with the advantages of simple preparation, perfect solubility and green characteristics, the catalytic fuel–oxidizer pair demonstrates promise as bipropellants for rocket applications.</p></div>","PeriodicalId":34595,"journal":{"name":"Energetic Materials Frontiers","volume":"5 1","pages":"Pages 41-46"},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666647224000071/pdfft?md5=6f75e4c45e7f13be8f845719334cce58&pid=1-s2.0-S2666647224000071-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139872378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CL-20 analogues: Structure - Thermal stability/decomposition mechanism relationships CL-20 类似物:结构-热稳定性/分解机理关系
Energetic Materials Frontiers Pub Date : 2024-03-01 DOI: 10.1016/j.enmf.2024.02.008
Valery P. Sinditskii , Nikolai V. Yudin , Valery V. Serushkin , Anna O. Gubina , Anastasia D. Smirnova , Vladimir V. Parakhin , Gennadii A. Smirnov , Kyrill Yu Suponitsky , Aleksei B. Sheremetev
{"title":"CL-20 analogues: Structure - Thermal stability/decomposition mechanism relationships","authors":"Valery P. Sinditskii ,&nbsp;Nikolai V. Yudin ,&nbsp;Valery V. Serushkin ,&nbsp;Anna O. Gubina ,&nbsp;Anastasia D. Smirnova ,&nbsp;Vladimir V. Parakhin ,&nbsp;Gennadii A. Smirnov ,&nbsp;Kyrill Yu Suponitsky ,&nbsp;Aleksei B. Sheremetev","doi":"10.1016/j.enmf.2024.02.008","DOIUrl":"10.1016/j.enmf.2024.02.008","url":null,"abstract":"<div><p>The thermal decomposition of a number of analogues of hexanitrohexaazaisowurtzitan (CL-20), in where one or more <em>N</em>-nitro groups have been replaced by another explosophoric unit (diverse <em>N</em>-alkylnitramine groups or <em>N</em>- trinitroethyl), has been studied by methods of isothermal and non-isothermal kinetics. It was found that replacing the <em>N</em>-nitro group with even a more thermally stable substituent leads to a decrease in the stability of the nitrated hexaazaisowurtzitane framework. It was suggested that the substituent distorts the symmetry of the strained hexaazaisowurtzitane cage, which affects the strength of the N–NO<sub>2</sub> bond. When a substituent less stable than the N-nitro group in the parent CL-20 is installed, the initial stage of degradation is determined by the decomposition kinetics of this substituent. One of the objects of this study, 4,10-dinitro-2,6,8,12-tetrakis (2,2,2-trinitroethyl) −2,4,6,8,10,12-hexaazaisowurtzitane (<strong>8</strong>), was synthesized for the first time; it was fully characterized and also confirmed by X-ray structural data.</p></div>","PeriodicalId":34595,"journal":{"name":"Energetic Materials Frontiers","volume":"5 1","pages":"Pages 27-40"},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666647224000113/pdfft?md5=ce24d3f5af250653176eb76dc518d98b&pid=1-s2.0-S2666647224000113-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139988367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
3,7-Dinitroimidazo[1,2-b]pyridazine-6,8-diamine: A promising building block for advanced heat-resistant and low-sensitivity energetic materials 3,7-二硝基咪唑并[1,2-b]哒嗪-6,8-二胺:先进耐热和低敏感高能材料的理想构件
Energetic Materials Frontiers Pub Date : 2024-03-01 DOI: 10.1016/j.enmf.2024.02.003
Jing Feng , Jie Sun , Lei Yang , Zhen-qi Zhang , Yang Liu , Qing Ma , Li-shuang Hu
{"title":"3,7-Dinitroimidazo[1,2-b]pyridazine-6,8-diamine: A promising building block for advanced heat-resistant and low-sensitivity energetic materials","authors":"Jing Feng ,&nbsp;Jie Sun ,&nbsp;Lei Yang ,&nbsp;Zhen-qi Zhang ,&nbsp;Yang Liu ,&nbsp;Qing Ma ,&nbsp;Li-shuang Hu","doi":"10.1016/j.enmf.2024.02.003","DOIUrl":"10.1016/j.enmf.2024.02.003","url":null,"abstract":"<div><p>Constructing heat-resistant fused heterocyclic compounds is increasingly fascinating in the field of energetic materials due to their excellent energy, high thermal stability, and low sensitivity, as well as high density in general. This study synthesized a novel heat-resistant explosive based on the imidazo [1,2-<em>b</em>]pyridazine fused ring,3,7-dinitroimidazo [1,2-<em>b</em>]pyridazine-6,8-diamine (<strong>5</strong>),using a three-step facile method. This compound exhibited a high density (1.856 g cm<sup>−3</sup>) and low mechanical sensitivities (<em>IS</em> = 40 J, <em>FS</em> = 350 N). Meanwhile, it displayed a higher thermal decomposition temperature of 324 °C compared to conventional heat-resistant explosive HNS (<em>T</em><sub>d</sub> = 318 °C). In addition, it demonstrated significantly higher detonation performance (<em>D</em> = 8336 <em>m</em> s<sup>−1</sup>, <em>p</em> = 27.25 GPa) than both TNT (<em>D</em> = 6881 <em>m</em> s<sup>−1</sup>, <em>p</em> = 19.5 GPa) and HNS (<em>D</em> = 7612 <em>m</em> s<sup>−1</sup>, <em>p</em> = 24.3 GPa). Theoretical analysis shows that the intramolecular hydrogen bonding interactions of NH<sub>2</sub>–NO<sub>2</sub>–NH<sub>2</sub> might be the main reason for the heat resistance of energetic materials based on the imidazo [1,2-<em>b</em>]pyridazine fused ring. The results of this study suggest that compound <strong>5</strong> is a promising building block and a candidate for heat-resistant energetic materials.</p></div>","PeriodicalId":34595,"journal":{"name":"Energetic Materials Frontiers","volume":"5 1","pages":"Pages 1-7"},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666647224000046/pdfft?md5=9e766e598dae0d3ef17fcad7727fdaf5&pid=1-s2.0-S2666647224000046-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139926593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
N-Acetonitrile functionalized 3-nitrotriazole: Precursor to nitrogen rich stable and insensitive energetic materials N-乙腈官能化 3-硝基三唑:富氮稳定不敏感高能材料的前体
Energetic Materials Frontiers Pub Date : 2024-03-01 DOI: 10.1016/j.enmf.2024.01.003
Prachi Bhatia, Peddapothula Sahithi Priya, Priyanka Das, Dheeraj Kumar
{"title":"N-Acetonitrile functionalized 3-nitrotriazole: Precursor to nitrogen rich stable and insensitive energetic materials","authors":"Prachi Bhatia,&nbsp;Peddapothula Sahithi Priya,&nbsp;Priyanka Das,&nbsp;Dheeraj Kumar","doi":"10.1016/j.enmf.2024.01.003","DOIUrl":"10.1016/j.enmf.2024.01.003","url":null,"abstract":"<div><p>In the field of energetic materials, prime attention has been given to the synthesis of environmentally compatible energetic materials having an adequate balance between energy and stability. For this purpose, nitrogen-rich heterocyclic rings have contributed as pivotal frameworks. Nitro-functionalized 1,2,4-triazoles have been profusely used as a constituent for synthesizing high-performing energetic materials (EMs) due to their high nitrogen content, good thermal stability, and modifiable sites via functionalization. Combination with a different energetic scaffold may provide an opportunity for accessible tailoring. In this work, in an effort to investigate the potential of 3-nitrotriazoles, its <em>N</em>-acetonitrile derivative <strong>2</strong> was synthesized, which was further converted to various explosophores. <em>N</em>-methylene-C bridged asymmetrically connected tetrazole (<strong>3</strong>) and 1,2,4-oxadiazole (<strong>9</strong> and <strong>10</strong>) based EMs have been synthesized. Further tuning of energetic properties via salt formation strategy was employed for the synthesis of compounds <strong>4</strong>–<strong>7</strong>, <strong>11</strong> and <strong>12</strong>. 1,2,4-oxadiazole-based compound <strong>9</strong> was also confirmed via X-ray diffraction analysis, and <strong>10</strong> was analyzed with <sup>15</sup>N NMR spectroscopy. Compounds <strong>3</strong>, <strong>4</strong>, <strong>5</strong>, <strong>7</strong> and <strong>9</strong> exhibited high thermal stabilities and were found to be insensitive towards impact and friction. Compounds <strong>5</strong>, <strong>6</strong>, and <strong>10</strong> exhibited detonation performance comparable to the conventional insensitive explosive TATB.</p></div>","PeriodicalId":34595,"journal":{"name":"Energetic Materials Frontiers","volume":"5 1","pages":"Pages 8-16"},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666647224000101/pdfft?md5=2befe2433c5a4d29450479e53c21fd68&pid=1-s2.0-S2666647224000101-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139951952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis, characterization, and thermal decomposition performance of 1,2,3-triazolyl-substituted 1,3,5-triazines with carbonyl, ester, and azide functional groups 具有羰基、酯和叠氮官能团的 1,2,3-三唑基取代 1,3,5- 三嗪的合成、表征和热分解性能
IF 3.3
Energetic Materials Frontiers Pub Date : 2023-12-01 DOI: 10.1016/j.enmf.2023.12.001
Tat'yana V. Sokolnikova , Maxim V. Penzik , Alexey G. Proidakov , Valery N. Kizhnyaev
{"title":"Synthesis, characterization, and thermal decomposition performance of 1,2,3-triazolyl-substituted 1,3,5-triazines with carbonyl, ester, and azide functional groups","authors":"Tat'yana V. Sokolnikova ,&nbsp;Maxim V. Penzik ,&nbsp;Alexey G. Proidakov ,&nbsp;Valery N. Kizhnyaev","doi":"10.1016/j.enmf.2023.12.001","DOIUrl":"10.1016/j.enmf.2023.12.001","url":null,"abstract":"<div><div>Based on the organocatalytic reaction of enamine azide addition of 2,4,6-triazido-1,3,5-triazine to acetylacetone acetoacetic ester, we synthesized a series of previously unknown mono-, di-, and tri(1,2,3-triazolyl)-substituted-1,3,5-triazines that additionally carried carbonyl, ester, and azide groups. The structure of the obtained compounds was proved by NMR (<sup>1</sup>H, <sup>13</sup>C) and IR spectroscopy, and the composition was confirmed by elemental analysis. With the aid of differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) coupled to mass spectrometry (TG-MS), we obtained data on the thermal behavior and decomposition mechanism for these compounds. We demonstrated that di(1,2,3-triazolyl)-substituted 1,3,5-triazines have an increased thermal stability and have higher values of decomposition onset temperature (220–250 °C) in comparison with tri(1,2,3-triazolyl)-substituted 1,3,5-triazines (180 °C and 160 °C, respectively).</div></div>","PeriodicalId":34595,"journal":{"name":"Energetic Materials Frontiers","volume":"4 4","pages":"Pages 213-220"},"PeriodicalIF":3.3,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138688451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis and characterization of 2-amino-4,5-bis(tetrazol-5-yl)-1,2,3-triazole: A high-nitrogen energetic material with low sensitivities and high thermal stability 2-amino-4,5-bis(tetrazol-5-yl)-1,2,3-triazole 的合成与表征:一种具有低敏感性和高热稳定性的高氮能材料
IF 3.3
Energetic Materials Frontiers Pub Date : 2023-12-01 DOI: 10.1016/j.enmf.2023.12.002
Xun Huang, Long Chen, Hai-feng Huang, Jun Yang
{"title":"Synthesis and characterization of 2-amino-4,5-bis(tetrazol-5-yl)-1,2,3-triazole: A high-nitrogen energetic material with low sensitivities and high thermal stability","authors":"Xun Huang,&nbsp;Long Chen,&nbsp;Hai-feng Huang,&nbsp;Jun Yang","doi":"10.1016/j.enmf.2023.12.002","DOIUrl":"10.1016/j.enmf.2023.12.002","url":null,"abstract":"<div><div>In this study, a high-nitrogen insensitive energetic material, 2-amino-4,5-bis(tetrazole-5-yl)-1,2,3-triazole (H<sub>2</sub>ABTT), was successfully synthesized by introducing the <em>N</em>-amino group on the 1,2,3-triazole ring. This compound exhibits excellent properties in many aspects. Compared to 4,5-bis(tetrazol-5-yl)-1,2,3-triazole (H<sub>3</sub>BTT), which has a decomposition temperature (<em>T</em><sub>d</sub>) of 277 °C, nitrogen content of 75.11 %, density of 1.69 g cm<sup>−3</sup>, a detonation velocity of 8630 m s<sup>−1</sup>, a detonation velocity of 26.3 GPa, an impact sensitivity (<em>IS</em>) of 2 J, and a friction sensitivity (<em>FS</em>) of 240 N, H<sub>2</sub>ABTT exhibits higher thermal stability of <em>T</em><sub>d</sub>:303 °C, higher nitrogen content of N%:76.35 %, higher density of 1.86 g cm<sup>−3</sup>, more desirable detonation properties (detonation velocity <em>Dv</em>: 9185 m s<sup>−1</sup>; detonation pressure <em>p</em>: 31.7 GPa), and lower mechanical sensitivities (<em>IS</em> &gt; 100 J; <em>FS</em> &gt; 360 N). Furthermore, H<sub>2</sub>ABTT outperforms insensitive explosive TATB (<em>Dv</em> = 8179 m s<sup>−1</sup>; <em>p</em> = 30.5 GPa; <em>IS</em> = 50 J; <em>FS</em> &gt; 360 N) in some properties, making it a potential high-performance insensitive explosive. Besides, energetic salts <strong>4–6</strong> were successfully synthesized based on H<sub>2</sub>ABTT. The calculated results show that some of these salts even possess higher detonation performance compared to H<sub>2</sub>ABTT.</div></div>","PeriodicalId":34595,"journal":{"name":"Energetic Materials Frontiers","volume":"4 4","pages":"Pages 221-228"},"PeriodicalIF":3.3,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138688733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Story 封面故事
IF 3.3
Energetic Materials Frontiers Pub Date : 2023-12-01 DOI: 10.1016/S2666-6472(23)00074-X
{"title":"Cover Story","authors":"","doi":"10.1016/S2666-6472(23)00074-X","DOIUrl":"10.1016/S2666-6472(23)00074-X","url":null,"abstract":"","PeriodicalId":34595,"journal":{"name":"Energetic Materials Frontiers","volume":"4 4","pages":"Page ii"},"PeriodicalIF":3.3,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139585157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信