Guang-yu Qi , Ye Cao , Tian-yu Jiang , Hong Zhang , Yi Wang
{"title":"Structural evolvement of 1-methyl-3,4,5-trinitropyrazole at high pressure","authors":"Guang-yu Qi , Ye Cao , Tian-yu Jiang , Hong Zhang , Yi Wang","doi":"10.1016/j.enmf.2024.03.003","DOIUrl":"10.1016/j.enmf.2024.03.003","url":null,"abstract":"<div><p>Explosives, a type of energetic material (EM), face a high-pressure environment in the detonation process or under shock conditions. Determining their high-pressure behavior is critical to their explosion and safety. 1-Methyl-3,4,5-trinitropyrazole (MTNP), a carrier of melt-cast explosives, exhibits the potential for replacing trinitrotoluene (TNT). However, there is limited knowledge about its structural evolvement at high pressure. Using a diamond anvil cell (DAC), this study investigated the structural variation of MTNP through <em>in situ</em> high-pressure synchrotron angle-dispersive X-ray diffraction (ADXRD) experiments and Raman measurements. As evidenced by the results, MTNP underwent phase transition at 8.7 GPa and amorphization at 15.3 GPa due to high pressure. Through the analysis of first-principles calculations and Raman spectra, this study proposed the mechanisms behind the changes in MTNP at high pressure. Furthermore, this study systematically explored the structural evolvement of MTNP and the evolution of its weak intermolecular interactions at high pressure, gaining further understanding of MTNP's detonation and safety.</p></div>","PeriodicalId":34595,"journal":{"name":"Energetic Materials Frontiers","volume":"5 2","pages":"Pages 90-95"},"PeriodicalIF":3.3,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666647224000253/pdfft?md5=3784701aaf015ded1398ec705e2215c5&pid=1-s2.0-S2666647224000253-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140202262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jun Wang , Hua-Mo Yin , Yao-feng Mao , Ling-feng Yang , Xiaowei Chen
{"title":"Bio-inspired design of PTFE/B energetic materials with high reactivity and flexibility","authors":"Jun Wang , Hua-Mo Yin , Yao-feng Mao , Ling-feng Yang , Xiaowei Chen","doi":"10.1016/j.enmf.2024.03.006","DOIUrl":"10.1016/j.enmf.2024.03.006","url":null,"abstract":"<div><p>Although new-type energetic materials have been investigated extensively, there is a challenge on how to integrate energy density and mechanical properties of energetic materials simultaneously. Herein, a versatile approach was proposed to design energetic materials with high energy density, reactivity, and flexibility based on a bio-inspired strategy. By mimicking the “brick-and-mortar” structure within a natural nacre, the energetic film with alternative layers of polytetrafluoroethylene (PTFE) and boron (B) was successfully fabricated. The nacre-mimetic PTFE/B energetic film exhibited excellent reaction heat (4413.9 J⋅g<sup>−1</sup>) and bright combustion flame, which may originate from the exothermic reaction mechanism between fluorine (F) and B. Even more remarkably, such PTFE/B energetic film revealed prominent mechanical flexibility reported for the first time. These findings indicate that the nacre-mimetic strategy provides an effective route to engineer energetic materials with high energy density, reactivity, and flexibility.</p></div>","PeriodicalId":34595,"journal":{"name":"Energetic Materials Frontiers","volume":"5 2","pages":"Pages 141-146"},"PeriodicalIF":3.3,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666647224000289/pdfft?md5=251687e8a3f8fc26236be25545e68ff1&pid=1-s2.0-S2666647224000289-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140404674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bi-bo Li , Xiao-long Li , Yang Liu , Peng-cheng Zhang , Mei-qi Wang , Shang-biao Feng , Shu-hai Zhang
{"title":"A new crystal form of Hx2TNBI·2H2O through solvent-induced crystallization","authors":"Bi-bo Li , Xiao-long Li , Yang Liu , Peng-cheng Zhang , Mei-qi Wang , Shang-biao Feng , Shu-hai Zhang","doi":"10.1016/j.enmf.2024.03.004","DOIUrl":"10.1016/j.enmf.2024.03.004","url":null,"abstract":"<div><p>Polymorphism is universal in energetic materials (EMs), which is originated from the differences of molecular conformers and stacking mode. The polymorphic transition may lead to the change of crystal structure and properties of EMs. In this work, <em>β</em>-Hx<sub>2</sub>TNBI·2H<sub>2</sub>O (<strong><em>β</em>-1</strong>) was successfully synthesized through solvent-induced conformational transition of Hx<sub>2</sub>TNBI·2H<sub>2</sub>O. From the perspective of quantum chemistry and molecular dynamics, the crystal stacking changes caused by different molecular conformations are discussed in detail, which leads to the properties difference of EMs. The results show that <strong><em>β</em>-1</strong> featured wave-like crystal stacking, making it less sensitive to external mechanical stimuli than <em>α</em>-Hx<sub>2</sub>TNBI·2H<sub>2</sub>O (<strong><em>α</em>-1</strong>) (<strong><em>α</em>-1</strong>: <em>IS</em> > 6 J, <em>FS</em> > 288 N; <strong><em>β</em>-1</strong>: <em>IS</em> > 20 J, <em>FS</em> > 360 N). <strong><em>α</em>-1</strong> featured better the aromaticity, which gives it higher thermal stability than <strong><em>β</em>-1</strong> (<strong><em>α</em>-1</strong>: <em>T</em><sub>d</sub> = 186 °C; <strong><em>β</em>-1</strong>: <em>T</em><sub>d</sub> = 146 °C). Simultaneously, compared with <strong><em>β</em>-1</strong>, <strong><em>α</em>-1</strong> has higher crystal density and detonation performance. This work provides a new and effective way to change the safety of EMs.</p></div>","PeriodicalId":34595,"journal":{"name":"Energetic Materials Frontiers","volume":"5 2","pages":"Pages 112-120"},"PeriodicalIF":3.3,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666647224000265/pdfft?md5=e9d0cf0f55927f978afc087416181c7b&pid=1-s2.0-S2666647224000265-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140590946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wei Du , Lei Yang , Jing Feng , Wei-hua Zhu , Jin-shan Li , Peng-cheng Zhang , Qing Ma
{"title":"Advancements in methodologies and techniques for the synthesis of energetic materials: A review","authors":"Wei Du , Lei Yang , Jing Feng , Wei-hua Zhu , Jin-shan Li , Peng-cheng Zhang , Qing Ma","doi":"10.1016/j.enmf.2024.06.002","DOIUrl":"10.1016/j.enmf.2024.06.002","url":null,"abstract":"<div><p>Recent years have witnessed significant advancements in methodologies and techniques for the synthesis of energetic materials, which are expected to shape future manufacturing and applications. Techniques including continuous flow chemistry, electrochemical synthesis, microwave-assisted synthesis, and biosynthesis have been extensively employed in the pharmaceutical and fine chemical industries and, gratifyingly, have found broader applications. This review comprehensively introduces recent advancements in the utilization of these emerging techniques, aiming to provide a catalyst for the development of novel green methods and techniques for synthesizing energetic materials.</p></div>","PeriodicalId":34595,"journal":{"name":"Energetic Materials Frontiers","volume":"5 2","pages":"Pages 175-190"},"PeriodicalIF":3.3,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266664722400037X/pdfft?md5=80ab0a3b19c117395ff75181ff6ae929&pid=1-s2.0-S266664722400037X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141413548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Research progress and prospect of explosive crystallization (2022-present)","authors":"Yu-jie Song, Ying Wang, Rong Xu, Qi Zhang","doi":"10.1016/j.enmf.2024.05.003","DOIUrl":"10.1016/j.enmf.2024.05.003","url":null,"abstract":"<div><p>To meet the requirements of explosives in military and civilian fields, researchers are committed to improving the comprehensive performance of explosives. The performance of explosive crystals can be significantly improved by regulating the structure and morphology of single-compound explosive crystals as well as compounding explosive crystals. According to the related research on explosive crystals at home and abroad from 2022 to now, the development of explosive crystal composites and single-compound explosives' crystal morphology, particle size, and crystal form regulation study were reviewed. The explosive crystal composites encompass both the complex consisting of a single-compound explosive and the complex consisting of two separate types of explosives. Simultaneously, the main problems encountered in the development of explosive crystals were also analyzed, such as the deficiency of systematic and broadly applicable regulation methods and theories. Finally, the future development direction of explosive crystal research was envisioned, with the aim of providing guidance for the production, handling, and application of explosives.</p></div>","PeriodicalId":34595,"journal":{"name":"Energetic Materials Frontiers","volume":"5 2","pages":"Pages 147-157"},"PeriodicalIF":3.3,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666647224000356/pdfft?md5=858338ff26c71734ba9eab6f1bed2aa5&pid=1-s2.0-S2666647224000356-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141509275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yi Wang , Xiao-lan Song , Zhi-hong Yu , Dan Song , Chong-wei An , Feng-sheng Li
{"title":"A high density and low sensitivity carrier explosive promising to replace TNT: 3-Bromo-5-fluoro-2,4,6-trinitroanisole","authors":"Yi Wang , Xiao-lan Song , Zhi-hong Yu , Dan Song , Chong-wei An , Feng-sheng Li","doi":"10.1016/j.enmf.2024.06.003","DOIUrl":"10.1016/j.enmf.2024.06.003","url":null,"abstract":"<div><p>To address the issues of high saturated vapor pressure, high toxicity, and high viscosity of TNT, this article used a chemical method to synthesize a new carrier explosive BFTNAN. The prepared samples were characterized using scanning electron microscope(SEM), energy spectrum(EDS), x-ray diffraction(XRD), infrared spectrum(IR), x-ray photoelectron spectroscopy(XPS), nuclear magnetic resonance, and elemental analysis techniques. The enthalpy of formation of BFTNAN was measured using a specialized calorimeter that is specially used in testing of explosives and powders. The thermal decomposition performance of BFTNAN was tested by DSC technology. Meanwhile, the mechanical sensitivity, thermal sensitivity, and detonation performance of BFTNAN based melt-cast explosive was also tested. The results of characterizations showed that the prepared sample was indeed BFTNAN. The enthalpy of formation of BFTNAN was determined as Δ<em>H</em><sub>f<em>,</em>BFTNAN</sub> = −72.6 kJ·mol<sup>−1</sup>. At a heating rate of 20 °C·min<sup>−1</sup>, the thermal decomposition peak of BFTNAN is at <em>T</em><sub>P</sub> = 250.6 °C, and the activation energy is <em>E</em><sub>K</sub> = 80 kJ·mol<sup>−1</sup>, which is closed to the <em>T</em><sub>p</sub> and <em>E</em><sub>K</sub> values of TNT. This indicates that BFTNAN is a relatively easy to decompose explosive, but the decomposition rate is not fast. The critical temperature for thermal explosion of BFTNAN reached <em>T</em><sub>b</sub> = 216 °C, which is also closed to the <em>T</em><sub>b</sub> value of TNT. The impact and friction sensitivity of BFTNAN were lower than those of TNT, which was closed to those of DNAN. The thermal sensitivity of BFTNAN is lower than TNT. The detonation velocity and heat of explosion of BFTNAN based melt-cast explosive were distinctly higher than those of TNT based explosive. Especially, BFTNAN based melt-cast explosive were of the advantages in chemical energy storage, work capacity, brisance, and ability of acceleration metals.</p></div>","PeriodicalId":34595,"journal":{"name":"Energetic Materials Frontiers","volume":"5 2","pages":"Pages 131-140"},"PeriodicalIF":3.3,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666647224000381/pdfft?md5=33fc128748f5dc123fd25569899d09f3&pid=1-s2.0-S2666647224000381-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141413750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advanced Technologies: An efficient toolkit to accelerate the development of novel energetic materials","authors":"Chunlin He","doi":"10.1016/j.enmf.2024.06.004","DOIUrl":"10.1016/j.enmf.2024.06.004","url":null,"abstract":"","PeriodicalId":34595,"journal":{"name":"Energetic Materials Frontiers","volume":"5 2","pages":"Pages 71-72"},"PeriodicalIF":3.3,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666647224000393/pdfft?md5=b13015baf078e1def6ef91bc5df254fa&pid=1-s2.0-S2666647224000393-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141509274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xian-zhi Zhou , Cheng-cheng Zeng , Zi-jian Li , Gang Li , Sheng-jun Zheng , Fu-De Nie
{"title":"Enhancing the mechanical properties of TATB-based PBXs through strong hydrogen bonding interactions","authors":"Xian-zhi Zhou , Cheng-cheng Zeng , Zi-jian Li , Gang Li , Sheng-jun Zheng , Fu-De Nie","doi":"10.1016/j.enmf.2024.05.002","DOIUrl":"10.1016/j.enmf.2024.05.002","url":null,"abstract":"<div><p>Interfacial strength is a key factor affecting the mechanical properties of materials. This study aims to enhance the mechanical properties of energetic polymer bonded explosives (PBXs) by modifying 1,3,5-triamino-2,4,6-trintrobenzene (TATB) crystals—a typical energetic material—using 2-ureido-41H-6-methyl-pyrimidinone (UPy) derivatives with strong hydrogen-bonding interactions. Specifically, strongly adhesive polydopamine (PDA) was employed to graft UPy-functionalized molecules with isocyanate groups (–NCO) and hydroxyl groups (–OH). Scanning electron microscopy (SEM) images indicate that TATB crystals became rougher after being coated with PDA, while the introduction of UPy did not affect the surface morphology. The presence of urethane bond peaks in the samples indicates that UPy-NCO was successfully grafted onto the PDA. UPy is essentially nonpolar and is prone to bind with binders, having the potential to improve the creep resistance of PBXs. Due to the strong interfacial enhancement by UPy and PDA, the tensile strength and compressive strength of the sample grafted with 1 wt% UPy significantly increased by 35.6 % and 26.5 %, respectively. Theoretical calculations indicate interfacial enhancement by UPy introduction, where the strong hydrogen bonding may produce a positive impact. The successful introduction of UPy modified the nature of TATB and improved its interfacial strength, finally enhancing the mechanical properties of the PBXs. The conditions for the grafting reaction in this study are mild and universal and thus can be applied to other compositions.</p></div>","PeriodicalId":34595,"journal":{"name":"Energetic Materials Frontiers","volume":"5 2","pages":"Pages 121-130"},"PeriodicalIF":3.3,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666647224000344/pdfft?md5=9a78e52b225fdd71ff77dddf673d40df&pid=1-s2.0-S2666647224000344-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141136707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rui-bing Lv , Jin-yang Zhou , Liu He , Ting-wei Wang , Hong-zhen Li , Qi Zhang
{"title":"Azo-linked four-heterocyclic energetic molecule and its complexes: Exploring the important influence of conjugated planar structure on their crystal arrangement and stability","authors":"Rui-bing Lv , Jin-yang Zhou , Liu He , Ting-wei Wang , Hong-zhen Li , Qi Zhang","doi":"10.1016/j.enmf.2024.01.001","DOIUrl":"10.1016/j.enmf.2024.01.001","url":null,"abstract":"<div><p>Using two routes, this study designed and synthesized a novel azo-linked four-heterocyclic compound, 1,2-bis(5-(1H-tetrazol-5-yl)-4H-1,2,4-triazol-3-yl) diazene (<strong>3</strong>, H<sub>4</sub>BTTD), with high yields. It corroborated that large conjugated planar energetic molecules in energetic compounds, exemplified by H<sub>4</sub>BTTD, contribute to the formation of layered crystal stacking based on abundant hydrogen bonds and interlayer π-π interactions. This markedly diminishes the mechanical sensitivities of energetic compounds. Single-crystal X-ray diffraction (XRD) experiments revealed the presence of layered structures in H<sub>4</sub>BTTD hydrate, as well as its magnesium-based complex [Mg<sub>2</sub>(BTTD)(H<sub>2</sub>O)<sub>8</sub>] <strong>(4)</strong> and calcium salt [Ca(H<sub>2</sub>O)<sub>7</sub>] (H<sub>3</sub>BTTD)<sub>2</sub> <strong>(5)</strong>. Based on these structural data, this study analyzed the causes of these layered structures. Furthermore, this study systematically characterized the compounds’ physical and chemical properties, including mechanical sensitivities (<em>IS</em> ≥ 20 J, <em>FS</em> > 360 N), thermal stability (<em>T</em><sub>d</sub> = 253.7–287.8 °C), and detonation performance (<em>D</em> = 6808–8253 m⋅s<sup>−1</sup>), confirming the influence of molecular structures on the macroscopic properties of energetic materials through crystal stacking. Additionally, pyrotechnic formulas based on compounds <strong>3</strong> and <strong>5</strong> exhibited the most intense light emission within a wavelength range of 658.6–689.8 nm, underscoring the potential application of both compounds as promising candidates in preparing high-purity red pyrotechnic formulation.</p></div>","PeriodicalId":34595,"journal":{"name":"Energetic Materials Frontiers","volume":"5 1","pages":"Pages 17-26"},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666647224000010/pdfft?md5=a6a56b5c3c1e120fe646459f923c13ce&pid=1-s2.0-S2666647224000010-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139770717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}