Azo-linked four-heterocyclic energetic molecule and its complexes: Exploring the important influence of conjugated planar structure on their crystal arrangement and stability

IF 3.3 Q2 CHEMISTRY, MULTIDISCIPLINARY
Rui-bing Lv , Jin-yang Zhou , Liu He , Ting-wei Wang , Hong-zhen Li , Qi Zhang
{"title":"Azo-linked four-heterocyclic energetic molecule and its complexes: Exploring the important influence of conjugated planar structure on their crystal arrangement and stability","authors":"Rui-bing Lv ,&nbsp;Jin-yang Zhou ,&nbsp;Liu He ,&nbsp;Ting-wei Wang ,&nbsp;Hong-zhen Li ,&nbsp;Qi Zhang","doi":"10.1016/j.enmf.2024.01.001","DOIUrl":null,"url":null,"abstract":"<div><p>Using two routes, this study designed and synthesized a novel azo-linked four-heterocyclic compound, 1,2-bis(5-(1H-tetrazol-5-yl)-4H-1,2,4-triazol-3-yl) diazene (<strong>3</strong>, H<sub>4</sub>BTTD), with high yields. It corroborated that large conjugated planar energetic molecules in energetic compounds, exemplified by H<sub>4</sub>BTTD, contribute to the formation of layered crystal stacking based on abundant hydrogen bonds and interlayer π-π interactions. This markedly diminishes the mechanical sensitivities of energetic compounds. Single-crystal X-ray diffraction (XRD) experiments revealed the presence of layered structures in H<sub>4</sub>BTTD hydrate, as well as its magnesium-based complex [Mg<sub>2</sub>(BTTD)(H<sub>2</sub>O)<sub>8</sub>] <strong>(4)</strong> and calcium salt [Ca(H<sub>2</sub>O)<sub>7</sub>] (H<sub>3</sub>BTTD)<sub>2</sub> <strong>(5)</strong>. Based on these structural data, this study analyzed the causes of these layered structures. Furthermore, this study systematically characterized the compounds’ physical and chemical properties, including mechanical sensitivities (<em>IS</em> ≥ 20 J, <em>FS</em> &gt; 360 N), thermal stability (<em>T</em><sub>d</sub> = 253.7–287.8 °C), and detonation performance (<em>D</em> = 6808–8253 m⋅s<sup>−1</sup>), confirming the influence of molecular structures on the macroscopic properties of energetic materials through crystal stacking. Additionally, pyrotechnic formulas based on compounds <strong>3</strong> and <strong>5</strong> exhibited the most intense light emission within a wavelength range of 658.6–689.8 nm, underscoring the potential application of both compounds as promising candidates in preparing high-purity red pyrotechnic formulation.</p></div>","PeriodicalId":34595,"journal":{"name":"Energetic Materials Frontiers","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666647224000010/pdfft?md5=a6a56b5c3c1e120fe646459f923c13ce&pid=1-s2.0-S2666647224000010-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energetic Materials Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666647224000010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Using two routes, this study designed and synthesized a novel azo-linked four-heterocyclic compound, 1,2-bis(5-(1H-tetrazol-5-yl)-4H-1,2,4-triazol-3-yl) diazene (3, H4BTTD), with high yields. It corroborated that large conjugated planar energetic molecules in energetic compounds, exemplified by H4BTTD, contribute to the formation of layered crystal stacking based on abundant hydrogen bonds and interlayer π-π interactions. This markedly diminishes the mechanical sensitivities of energetic compounds. Single-crystal X-ray diffraction (XRD) experiments revealed the presence of layered structures in H4BTTD hydrate, as well as its magnesium-based complex [Mg2(BTTD)(H2O)8] (4) and calcium salt [Ca(H2O)7] (H3BTTD)2 (5). Based on these structural data, this study analyzed the causes of these layered structures. Furthermore, this study systematically characterized the compounds’ physical and chemical properties, including mechanical sensitivities (IS ≥ 20 J, FS > 360 N), thermal stability (Td = 253.7–287.8 °C), and detonation performance (D = 6808–8253 m⋅s−1), confirming the influence of molecular structures on the macroscopic properties of energetic materials through crystal stacking. Additionally, pyrotechnic formulas based on compounds 3 and 5 exhibited the most intense light emission within a wavelength range of 658.6–689.8 nm, underscoring the potential application of both compounds as promising candidates in preparing high-purity red pyrotechnic formulation.

Abstract Image

Abstract Image

偶氮连接的四杂环高能分子及其配合物:探索共轭平面结构对其晶体排列和稳定性的重要影响
本研究采用两种路线设计并高产合成了一种新型偶氮连接的四杂环化合物--1,2-双(5-(1H-四唑-5-基)-4H-1,2,4-三唑-3-基)二氮烯(3,H4BTTD)。研究证实,高能化合物中的大共轭平面高能分子(以 H4BTTD 为例)会在大量氢键和层间 π-π 相互作用的基础上形成层状晶体堆积。这明显降低了高能化合物的机械敏感性。单晶 X 射线衍射 (XRD) 实验显示,H4BTTD 水合物及其镁基复合物 [Mg2(BTTD)(H2O)8] (4) 和钙盐 [Ca(H2O)7] (H3BTTD)2 (5) 中存在层状结构。根据这些结构数据,本研究分析了这些层状结构的成因。此外,本研究还系统分析了这些化合物的物理和化学特性,包括机械灵敏度(IS ≥ 20 J,FS > 360 N)、热稳定性(Td = 253.7-287.8 °C )和引爆性能(D = 6808-8253 m s-1),证实了分子结构通过晶体堆叠对高能材料宏观特性的影响。此外,基于化合物 3 和化合物 5 的烟火配方在 658.6-689.8 纳米波长范围内表现出最强烈的光辐射,这突出表明这两种化合物在制备高纯度红色烟火配方方面具有潜在的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energetic Materials Frontiers
Energetic Materials Frontiers Materials Science-Materials Science (miscellaneous)
CiteScore
6.90
自引率
0.00%
发文量
42
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信