Synthesis and characterization of 2-amino-4,5-bis(tetrazol-5-yl)-1,2,3-triazole: A high-nitrogen energetic material with low sensitivities and high thermal stability
{"title":"Synthesis and characterization of 2-amino-4,5-bis(tetrazol-5-yl)-1,2,3-triazole: A high-nitrogen energetic material with low sensitivities and high thermal stability","authors":"Xun Huang, Long Chen, Hai-feng Huang, Jun Yang","doi":"10.1016/j.enmf.2023.12.002","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, a high-nitrogen insensitive energetic material, 2-amino-4,5-bis(tetrazole-5-yl)-1,2,3-triazole (H<sub>2</sub>ABTT), was successfully synthesized by introducing the <em>N</em>-amino group on the 1,2,3-triazole ring. This compound exhibits excellent properties in many aspects. Compared to 4,5-bis(tetrazol-5-yl)-1,2,3-triazole (H<sub>3</sub>BTT), which has a decomposition temperature (<em>T</em><sub>d</sub>) of 277 °C, nitrogen content of 75.11 %, density of 1.69 g cm<sup>−3</sup>, a detonation velocity of 8630 m s<sup>−1</sup>, a detonation velocity of 26.3 GPa, an impact sensitivity (<em>IS</em>) of 2 J, and a friction sensitivity (<em>FS</em>) of 240 N, H<sub>2</sub>ABTT exhibits higher thermal stability of <em>T</em><sub>d</sub>:303 °C, higher nitrogen content of N%:76.35 %, higher density of 1.86 g cm<sup>−3</sup>, more desirable detonation properties (detonation velocity <em>Dv</em>: 9185 m s<sup>−1</sup>; detonation pressure <em>p</em>: 31.7 GPa), and lower mechanical sensitivities (<em>IS</em> > 100 J; <em>FS</em> > 360 N). Furthermore, H<sub>2</sub>ABTT outperforms insensitive explosive TATB (<em>Dv</em> = 8179 m s<sup>−1</sup>; <em>p</em> = 30.5 GPa; <em>IS</em> = 50 J; <em>FS</em> > 360 N) in some properties, making it a potential high-performance insensitive explosive. Besides, energetic salts <strong>4–6</strong> were successfully synthesized based on H<sub>2</sub>ABTT. The calculated results show that some of these salts even possess higher detonation performance compared to H<sub>2</sub>ABTT.</div></div>","PeriodicalId":34595,"journal":{"name":"Energetic Materials Frontiers","volume":"4 4","pages":"Pages 221-228"},"PeriodicalIF":3.3000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energetic Materials Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666647223000684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, a high-nitrogen insensitive energetic material, 2-amino-4,5-bis(tetrazole-5-yl)-1,2,3-triazole (H2ABTT), was successfully synthesized by introducing the N-amino group on the 1,2,3-triazole ring. This compound exhibits excellent properties in many aspects. Compared to 4,5-bis(tetrazol-5-yl)-1,2,3-triazole (H3BTT), which has a decomposition temperature (Td) of 277 °C, nitrogen content of 75.11 %, density of 1.69 g cm−3, a detonation velocity of 8630 m s−1, a detonation velocity of 26.3 GPa, an impact sensitivity (IS) of 2 J, and a friction sensitivity (FS) of 240 N, H2ABTT exhibits higher thermal stability of Td:303 °C, higher nitrogen content of N%:76.35 %, higher density of 1.86 g cm−3, more desirable detonation properties (detonation velocity Dv: 9185 m s−1; detonation pressure p: 31.7 GPa), and lower mechanical sensitivities (IS > 100 J; FS > 360 N). Furthermore, H2ABTT outperforms insensitive explosive TATB (Dv = 8179 m s−1; p = 30.5 GPa; IS = 50 J; FS > 360 N) in some properties, making it a potential high-performance insensitive explosive. Besides, energetic salts 4–6 were successfully synthesized based on H2ABTT. The calculated results show that some of these salts even possess higher detonation performance compared to H2ABTT.