Environmental Science and Ecotechnology最新文献

筛选
英文 中文
Provincial-Level Analysis of Electrification Feasibility and Climate Policy Interactions 电气化可行性与气候政策相互作用的省级分析
IF 14 1区 环境科学与生态学
Environmental Science and Ecotechnology Pub Date : 2024-08-05 DOI: 10.1016/j.ese.2024.100474
Huihuang Wu , Haozhe Yang , Xiurong Hu , Yuhan Zhou , Xian Wang , Junfeng Liu , Ying Liu , Shu Tao
{"title":"Provincial-Level Analysis of Electrification Feasibility and Climate Policy Interactions","authors":"Huihuang Wu ,&nbsp;Haozhe Yang ,&nbsp;Xiurong Hu ,&nbsp;Yuhan Zhou ,&nbsp;Xian Wang ,&nbsp;Junfeng Liu ,&nbsp;Ying Liu ,&nbsp;Shu Tao","doi":"10.1016/j.ese.2024.100474","DOIUrl":"10.1016/j.ese.2024.100474","url":null,"abstract":"<div><p>Improving electrification feasibility is essential for reducing emissions from non-electric energy sources, thereby enhancing air quality and public health. Concurrently, climate mitigation actions, such as carbon pricing policies, have significant potential to alleviate increasing carbon dioxide (CO<sub>2</sub>) and other co-emitted air pollutants. However, the interactions between climate policy and the improvement of electrification feasibility at the provincial level remain unclear, collectively impacting the net-zero transition of energy-intensive sectors. Here we combine a technologically rich economic-energy-environment model with air quality modeling across China to examine the health, climate, and economic implications of large-scale upgrades in electrification feasibility and climate policies from 2017 to 2030. The results indicate that advancing electrification feasibility, coupled with adopting carbon pricing policies, is likely to facilitate a transition towards electricity-dominant energy systems. Improved electrification feasibility is projected to yield a 7–25% increase in nationwide climate benefits and a 5–14% increase in health benefits by 2030. These incremental benefits, coupled with reduced economic costs, result in a 22–68% increase in net benefits. However, regionally, improvements in electrification feasibility will lead to heightened power demand and unintended emissions from electric energy production in certain provinces (e.g., Nei Mongol) due to the coal-dominated power system. Additionally, in major coal-producing provinces like Shanxi and Shaanxi, enhanced electrification feasibility exacerbates the negative economic impacts of climate policies. This study provides quantitative insights into how improving electrification feasibility reshapes energy evolution and the benefit-cost profile of climate policy at the provincial level. The findings underscore the necessity of a well-designed compensation scheme between affected and unaffected provinces and coordinated emission mitigation across the power and other end-use sectors.</p></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"22 ","pages":"Article 100474"},"PeriodicalIF":14.0,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666498424000887/pdfft?md5=4a4f6f14d4534869ddd61d5c3dba212c&pid=1-s2.0-S2666498424000887-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142006384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Resilient water quality management: Insights from Japan's environmental quality standards for conserving aquatic life framework 弹性水质管理:日本水生生物保护框架环境质量标准的启示
IF 14 1区 环境科学与生态学
Environmental Science and Ecotechnology Pub Date : 2024-08-05 DOI: 10.1016/j.ese.2024.100472
Zihan Xu , Ying Wang , Li Xie , Di Shi , Jia He , Yanqing Chen , Chenglian Feng , John P. Giesy , Kenneth M.Y. Leung , Fengchang Wu
{"title":"Resilient water quality management: Insights from Japan's environmental quality standards for conserving aquatic life framework","authors":"Zihan Xu ,&nbsp;Ying Wang ,&nbsp;Li Xie ,&nbsp;Di Shi ,&nbsp;Jia He ,&nbsp;Yanqing Chen ,&nbsp;Chenglian Feng ,&nbsp;John P. Giesy ,&nbsp;Kenneth M.Y. Leung ,&nbsp;Fengchang Wu","doi":"10.1016/j.ese.2024.100472","DOIUrl":"10.1016/j.ese.2024.100472","url":null,"abstract":"<div><p>Currently, chemicals and waste are recognized as key drivers of habitat degradation and biodiversity loss in aquatic ecosystems. To ensure vibrant habitats for aquatic species and maintain a sustainable aquatic food supply system, Japan promulgated its <em>Environmental Quality Standards for the Conservation of Aquatic Life</em> (EQS-CAL), based on its own aquatic life water quality criteria (ALWQC) derivation method and application mechanism. Here we overview Japan's EQS-CAL framework and highlight their best practices by examining the framework systems and related policies. Key experiences from Japan's EQS-CAL system include: (1) Classifying six types of aquatic organisms according to their adaptability to habitat status; (2) Using a risk-based chemical screening system for three groups of chemical pollutants; (3) Recommending a five-step method for determining ALWQC values based on the most sensitive life stage of the most sensitive species; (4) Applying site-specific implementation mechanisms through a series of Plan-Do-Check-Act loops. This paper offers scientific references for other jurisdictions, aiding in the development of more resilient ALWQC systems that can maintain healthy environments for aquatic life and potentially mitigate ongoing threats to human societies and global aquatic biodiversity.</p></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"22 ","pages":"Article 100472"},"PeriodicalIF":14.0,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666498424000863/pdfft?md5=e4dda6a9d856a2e57ebd34b846b3310e&pid=1-s2.0-S2666498424000863-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141993870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nonlinear impacts of temperature on antibiotic resistance in Escherichia coli 温度对大肠杆菌抗生素耐药性的非线性影响
IF 14 1区 环境科学与生态学
Environmental Science and Ecotechnology Pub Date : 2024-08-03 DOI: 10.1016/j.ese.2024.100475
Wenya Zhao , Shikan Zheng , Chengsong Ye , Jianguo Li , Xin Yu
{"title":"Nonlinear impacts of temperature on antibiotic resistance in Escherichia coli","authors":"Wenya Zhao ,&nbsp;Shikan Zheng ,&nbsp;Chengsong Ye ,&nbsp;Jianguo Li ,&nbsp;Xin Yu","doi":"10.1016/j.ese.2024.100475","DOIUrl":"10.1016/j.ese.2024.100475","url":null,"abstract":"<div><p>The increase in bacterial antibiotic resistance poses a significant threat to the effectiveness of antibiotics, and there is growing evidence suggesting that global warming may speed up this process. However, the direct influence of temperature on the development of antibiotic resistance and the underlying mechanisms is not yet fully understood. Here we show that antibiotic resistance exhibits a nonlinear response to elevated temperatures under the combined stress of temperatures and antibiotics. We find that the effectiveness of gatifloxacin against <em>Escherichia coli</em> significantly diminishes at 42 °C, while resistance increases 256-fold at 27 °C. Additionally, the increased transcription levels of genes such as <em>marA</em>, <em>ygfA</em>, and <em>ibpB</em> with rising temperatures, along with gene mutations at different sites, explain the observed variability in resistance patterns. These findings highlight the complexity of antibiotic resistance evolution and the urgent need for comprehensive studies to understand and mitigate the effects of global warming on antibiotic resistance.</p></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"22 ","pages":"Article 100475"},"PeriodicalIF":14.0,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666498424000899/pdfft?md5=7d1fbcc89f1a198116ad25356f02d313&pid=1-s2.0-S2666498424000899-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142096609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polystyrene microplastics and di-2-ethylhexyl phthalate co-exposure: Implications for female reproductive health 聚苯乙烯微塑料与邻苯二甲酸二-2-乙基己酯的共同暴露:对女性生殖健康的影响
IF 14 1区 环境科学与生态学
Environmental Science and Ecotechnology Pub Date : 2024-08-03 DOI: 10.1016/j.ese.2024.100471
Ke Xu, Yunyi Wang, Xiao Gao, Zhaolan Wei, Qi Han, Shuxin Wang, Wanting Du, Jian Wan, Cuihong Wan, Mingqing Chen
{"title":"Polystyrene microplastics and di-2-ethylhexyl phthalate co-exposure: Implications for female reproductive health","authors":"Ke Xu,&nbsp;Yunyi Wang,&nbsp;Xiao Gao,&nbsp;Zhaolan Wei,&nbsp;Qi Han,&nbsp;Shuxin Wang,&nbsp;Wanting Du,&nbsp;Jian Wan,&nbsp;Cuihong Wan,&nbsp;Mingqing Chen","doi":"10.1016/j.ese.2024.100471","DOIUrl":"10.1016/j.ese.2024.100471","url":null,"abstract":"<div><p>Microplastics and phthalates are prevalent and emerging pollutants that pose a potential impact on human health. Previous studies suggest that both microplastics and phthalates can adversely affect the reproductive systems of humans and mammals. However, the combined impact of these pollutants on the female reproductive system remains unclear. Here we show the impacts of exposure to polystyrene microplastics (PS-MPs) and di-2-ethylhexyl phthalate (DEHP) on female Sprague-Dawley rats’ reproductive systems. We find that co-exposure to PS-MPs and DEHP results in a marked increase in cystic and atretic follicles, oxidative stress, fibrosis, and dysregulation of serum sex hormone homeostasis in the ovaries of the rats. Proteomic analysis identified differentially expressed proteins that were predominantly enriched in signaling pathways related to fatty acid metabolism and tight junctions, regulated by transforming growth factor β1 (TGF-β1). We further confirm that co-exposure to DEHP and PS-MPs activates the TGF-β1/Smad3 signaling pathway, and inhibiting this pathway alleviates oxidative stress, hormonal dysregulation, and ovarian fibrosis. These results indicate that exposure to the combination of microplastics and phthalates leads to a significant increase in atretic follicles and may increase the risk of polycystic ovary syndrome (PCOS). Our study provides new insights into the reproductive toxicity effects of microplastics and DEHP exposure on female mammals, highlighting the potential link between environmental pollutants and the occurrence of PCOS. These findings highlight the need for comprehensive assessments of the reproductive health risks posed by microplastic pollution to women and contribute to the scientific basis for evaluating such risks.</p></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"22 ","pages":"Article 100471"},"PeriodicalIF":14.0,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666498424000851/pdfft?md5=5f70e2dba1ff77c56689e7612c64ccd3&pid=1-s2.0-S2666498424000851-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141963091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gestational PFAS exposure and newborn size: The modifying effect of cord blood fatty acids 妊娠期PFAS暴露与新生儿体型:脐带血脂肪酸的调节作用
IF 14 1区 环境科学与生态学
Environmental Science and Ecotechnology Pub Date : 2024-08-03 DOI: 10.1016/j.ese.2024.100476
Chang Gao , Lin Luo , Yijun Fan , Liyan Guo , Lijuan Guo , Lin Tao , Fangbiao Tao , De-Xiang Xu , Robert A. Gibson , Maria Makrides , Hua Wang , Yichao Huang
{"title":"Gestational PFAS exposure and newborn size: The modifying effect of cord blood fatty acids","authors":"Chang Gao ,&nbsp;Lin Luo ,&nbsp;Yijun Fan ,&nbsp;Liyan Guo ,&nbsp;Lijuan Guo ,&nbsp;Lin Tao ,&nbsp;Fangbiao Tao ,&nbsp;De-Xiang Xu ,&nbsp;Robert A. Gibson ,&nbsp;Maria Makrides ,&nbsp;Hua Wang ,&nbsp;Yichao Huang","doi":"10.1016/j.ese.2024.100476","DOIUrl":"10.1016/j.ese.2024.100476","url":null,"abstract":"<div><p>Per- and polyfluoroalkyl substances (PFASs) can disrupt lipid metabolism, and changes in cord blood fatty acid composition have been observed in small newborns. Emerging evidence suggests that exposure to PFASs during pregnancy is linked to decreased newborn size, although the evidence is not consistent. The modifying effect of fatty acids on the associations of gestational PFAS exposure with newborn size is still unknown. Here we show that the nutritional status of the fetus, as indicated by the level of fatty acids in the cord blood, mitigates the adverse effects of gestational PFAS exposure on the size of the newborn. Our study confirms the adverse developmental effects of PFASs and identifies emerging short-chain PFASs as the primary drivers of reduced newborn size, despite their lower exposure burden compared to legacy PFASs. Additionally, we find the protective role of cord blood fatty acids, suggesting potential strategies for mitigating the detrimental effects of emerging environmental exposures on human health. Our findings provide new evidence of the potential toxicity of emerging PFASs and call for further toxicity evaluations of these pollutants for regulatory purposes. Future studies should consider the complex interaction between exposure and nutrition within the human body, particularly during the first thousand days of life, to promote lifelong health.</p></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"22 ","pages":"Article 100476"},"PeriodicalIF":14.0,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666498424000905/pdfft?md5=359cc794b1efdae7c4c8cb025f99cc9b&pid=1-s2.0-S2666498424000905-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141963751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Applying molecular oxygen for organic pollutant degradation: Strategies, mechanisms, and perspectives 应用分子氧降解有机污染物:战略、机制和前景
IF 14 1区 环境科学与生态学
Environmental Science and Ecotechnology Pub Date : 2024-08-02 DOI: 10.1016/j.ese.2024.100469
Xiaohu Fan , Qiang Fu , Guorui Liu , Hongliang Jia , Xiaolong Dong , Yi-Fan Li , Song Cui
{"title":"Applying molecular oxygen for organic pollutant degradation: Strategies, mechanisms, and perspectives","authors":"Xiaohu Fan ,&nbsp;Qiang Fu ,&nbsp;Guorui Liu ,&nbsp;Hongliang Jia ,&nbsp;Xiaolong Dong ,&nbsp;Yi-Fan Li ,&nbsp;Song Cui","doi":"10.1016/j.ese.2024.100469","DOIUrl":"10.1016/j.ese.2024.100469","url":null,"abstract":"<div><p>Molecular oxygen (O<sub>2</sub>) is an environmentally friendly, cost-effective, and non-toxic oxidant. Activation of O<sub>2</sub> generates various highly oxidative reactive oxygen species (ROS), which efficiently degrade pollutants with minimal environmental impact. Despite extensive research on the application of O<sub>2</sub> activation in environmental remediation, a comprehensive review addressing this topic is currently lacking. This review provides an informative overview of recent advancements in O<sub>2</sub> activation, focusing on three primary strategies: photocatalytic activation, chemical activation, and electrochemical activation of O<sub>2</sub>. We elucidate the respective mechanisms of these activation methods and discuss their advantages and disadvantages. Additionally, we thoroughly analyze the influence of oxygen supply, reactive temperature, and pH on the O<sub>2</sub> activation process. From electron transfer and energy transfer perspectives, we explore the pathways for ROS generation during O<sub>2</sub> activation. Finally, we address the challenges faced by researchers in this field and discuss future prospects for utilizing O<sub>2</sub> activation in pollution control applications. This detailed analysis enhances our understanding and provides valuable insights for the practical implementation of organic pollutant degradation.</p></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"22 ","pages":"Article 100469"},"PeriodicalIF":14.0,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666498424000838/pdfft?md5=e9949a157589462ffcbf394e275668e2&pid=1-s2.0-S2666498424000838-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142048528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The convergence of lactic acid microbiomes and metabolites in long-term electrofermentation 长期电发酵中乳酸微生物群和代谢物的融合
IF 14 1区 环境科学与生态学
Environmental Science and Ecotechnology Pub Date : 2024-07-27 DOI: 10.1016/j.ese.2024.100459
Aaron Leininger , Sidan Lu , Jinyue Jiang , Yanhong Bian , Harold D. May , Zhiyong Jason Ren
{"title":"The convergence of lactic acid microbiomes and metabolites in long-term electrofermentation","authors":"Aaron Leininger ,&nbsp;Sidan Lu ,&nbsp;Jinyue Jiang ,&nbsp;Yanhong Bian ,&nbsp;Harold D. May ,&nbsp;Zhiyong Jason Ren","doi":"10.1016/j.ese.2024.100459","DOIUrl":"10.1016/j.ese.2024.100459","url":null,"abstract":"<div><p>Regulating electron transfer in predominantly fermentative microbiomes has broad implications in environmental, chemical, food, and medical fields. Here we demonstrate electrochemical control in fermenting food waste, digestate, and wastewater to improve lactic acid production. We hypothesize that applying anodic potential will expedite and direct fermentation towards lactic acid. Continued operation that introduced epi/endophytic communities (<em>Lactococcus, Lactobacillus, Weissella</em>) to pure culture <em>Lactiplantibacillus plantarum</em> reactors with static electrodes was associated with the loss of anode-induced process intensification despite 80% <em>L. plantarum</em> retention. Employing fluidized electrodes discouraged biofilm formation and extended electrode influence to planktonic gram-positive fermenters using mediated extracellular electron transfer. While short-term experiments differentially enriched <em>Lactococcus</em> and <em>Klebsiella</em> spp., longer-term operations indicated convergent microbiomes and product spectra. These results highlight a functional resilience of environmental fermentative microbiomes to perturbations in redox potential, underscoring the need to better understand electrode induced polymicrobial interactions and physiological impacts to engineer tunable open-culture or synthetic consortia.</p></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"22 ","pages":"Article 100459"},"PeriodicalIF":14.0,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666498424000735/pdfft?md5=5dcfc11c9ef5c249c1effd34b40ce3f7&pid=1-s2.0-S2666498424000735-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141847230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Seasonal dynamics of airborne biomolecules influence the size distribution of Arctic aerosols 空气中生物大分子的季节性动态影响北极气溶胶的大小分布
IF 14 1区 环境科学与生态学
Environmental Science and Ecotechnology Pub Date : 2024-07-18 DOI: 10.1016/j.ese.2024.100458
Eunho Jang , Ki-Tae Park , Young Jun Yoon , Kyoung-Soon Jang , Min Sung Kim , Kitae Kim , Hyun Young Chung , Mauro Mazzola , David Cappelletti , Bang Yong Lee
{"title":"Seasonal dynamics of airborne biomolecules influence the size distribution of Arctic aerosols","authors":"Eunho Jang ,&nbsp;Ki-Tae Park ,&nbsp;Young Jun Yoon ,&nbsp;Kyoung-Soon Jang ,&nbsp;Min Sung Kim ,&nbsp;Kitae Kim ,&nbsp;Hyun Young Chung ,&nbsp;Mauro Mazzola ,&nbsp;David Cappelletti ,&nbsp;Bang Yong Lee","doi":"10.1016/j.ese.2024.100458","DOIUrl":"10.1016/j.ese.2024.100458","url":null,"abstract":"<div><p>Organic matter is crucial in aerosol–climate interactions, yet the physicochemical properties and origins of organic aerosols remain poorly understood. Here we show the seasonal characteristics of submicron organic aerosols in Arctic Svalbard during spring and summer, emphasizing their connection to transport patterns and particle size distribution. Microbial-derived organic matter (MOM) and terrestrial-derived organic matter (TOM) accounted for over 90% of the total organic mass in Arctic aerosols during these seasons, comprising carbohydrate/protein-like and lignin/tannin-like compounds, respectively. In spring, aerosols showed high TOM and low MOM intensities due to biomass-burning influx in the central Arctic. In contrast, summer exhibited elevated MOM intensity, attributed to the shift in predominant atmospheric transport from the central Arctic to the biologically active Greenland Sea. MOM and TOM were associated with Aitken mode particles (&lt;100 nm diameter) and accumulation mode particles (&gt;100 nm diameter), respectively. This association is linked to the molecular size of biomolecules, impacting the number concentrations of corresponding aerosol classes. These findings highlight the importance of considering seasonal atmospheric transport patterns and organic source-dependent particle size distributions in assessing aerosol properties in the changing Arctic.</p></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"22 ","pages":"Article 100458"},"PeriodicalIF":14.0,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666498424000723/pdfft?md5=3505770fbefa83fd1bf2dbb0ff240959&pid=1-s2.0-S2666498424000723-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141850079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Highly stable carbon-coated nZVI composite Fe0@RF-C for efficient degradation of emerging contaminants 用于高效降解新兴污染物的高稳定性碳涂层 nZVI 复合材料 Fe0@RF-C
IF 14 1区 环境科学与生态学
Environmental Science and Ecotechnology Pub Date : 2024-07-18 DOI: 10.1016/j.ese.2024.100457
Guizhou Xu , Lin Sun , Yizhou Tu , Xiaolei Teng , Yumeng Qi , Yaoyao Wang , Aimin Li , Xianchuan Xie , Xueyuan Gu
{"title":"Highly stable carbon-coated nZVI composite Fe0@RF-C for efficient degradation of emerging contaminants","authors":"Guizhou Xu ,&nbsp;Lin Sun ,&nbsp;Yizhou Tu ,&nbsp;Xiaolei Teng ,&nbsp;Yumeng Qi ,&nbsp;Yaoyao Wang ,&nbsp;Aimin Li ,&nbsp;Xianchuan Xie ,&nbsp;Xueyuan Gu","doi":"10.1016/j.ese.2024.100457","DOIUrl":"10.1016/j.ese.2024.100457","url":null,"abstract":"<div><p>Nanoscale zerovalent iron (nZVI) has garnered significant attention as an efficient advanced oxidation activator, but its practical application is hindered by aggregation and oxidation. Coating nZVI with carbon can effectively addresses these issues. A simple and scalable production method for carbon-coated nZVI composite is highly desirable. The anti-oxidation and catalytic performance of carbon-coated nZVI composite merit in-depth research. In this study, a highly stable carbon-coated core-shell nZVI composite (Fe<sup>0</sup>@RF-C) was successfully prepared using a simple method combining phenolic resin embedding and carbothermal reduction. Fe<sup>0</sup>@RF-C was employed as a heterogeneous persulfate (PS) activator for degrading 2,4-dihydroxybenzophenone (BP-1), an emerging contaminant. Compared to commercial nZVI, Fe<sup>0</sup>@RF-C exhibited superior PS activation performance and oxidation resistance. Nearly 95% of BP-1 was removed within 10 min in the Fe<sup>0</sup>@RF-C/PS system. The carbon layer promotes the enrichment of BP-1 and accelerates its degradation through singlet oxygen oxidation and direct electron transfer processes. This study provides a straightforward approach for designing highly stable carbon-coated nZVI composite and elucidates the enhanced catalytic performance mechanism by carbon layers.</p></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"22 ","pages":"Article 100457"},"PeriodicalIF":14.0,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666498424000711/pdfft?md5=736bc4cf5607e09101117207810ee427&pid=1-s2.0-S2666498424000711-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141847651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Low-condensation diesel use contributes to winter haze in cold regions of China 低凝柴油的使用导致中国寒冷地区冬季出现雾霾天气
IF 14 1区 环境科学与生态学
Environmental Science and Ecotechnology Pub Date : 2024-07-17 DOI: 10.1016/j.ese.2024.100456
Weiwei Song , Mengying Wang , Yixuan Zhao , Yu Bo , Wanying Yao , Ruihan Chen , Xianshi Wang , Xiaoyan Wang , Chunhui Li , Kebin He
{"title":"Low-condensation diesel use contributes to winter haze in cold regions of China","authors":"Weiwei Song ,&nbsp;Mengying Wang ,&nbsp;Yixuan Zhao ,&nbsp;Yu Bo ,&nbsp;Wanying Yao ,&nbsp;Ruihan Chen ,&nbsp;Xianshi Wang ,&nbsp;Xiaoyan Wang ,&nbsp;Chunhui Li ,&nbsp;Kebin He","doi":"10.1016/j.ese.2024.100456","DOIUrl":"10.1016/j.ese.2024.100456","url":null,"abstract":"<div><p>The application of low-condensation diesel in cold regions with extremely low ambient temperatures (−14 to −29 °C) has enabled the operation of diesel vehicles. Still, it may contribute to heavy haze pollution in cold regions during winter. Here we examine pollutant emissions from low-condensation diesel in China. We measure the emissions of elemental carbon (EC), organic carbon (OC), and elements, including heavy metals such as arsenic (As). Our results show that low-condensation diesel increased EC and OC emissions by 2.5 and 2.6 times compared to normal diesel fuel, respectively. Indicators of vehicular sources, including EC, As, lead (Pb), cadmium (Cd), chromium (Cr), nickel (Ni), and manganese (Mn), increased by approximately 20.2–162.5% when using low-condensation diesel. Seasonal variation of vehicular source indicators, observed at road site ambient environments revealed the enhancement of PM<sub>2.5</sub> pollution by the application of low-condensation diesel in winter. These findings suggest that −35# diesel, a low-cetane index diesel, may enhance air pollution in winter, according to a dynamometer test conducted in laboratory. It raises questions about whether higher emissions are released if −35# diesel is applied to running vehicles in real-world cold ambient environments.</p></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"22 ","pages":"Article 100456"},"PeriodicalIF":14.0,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266649842400070X/pdfft?md5=6e24ddbac6855fccc8eb1dd27d09a7c6&pid=1-s2.0-S266649842400070X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141848160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信