MnO2-Catalyzed electrocatalytic mineralization of triclosan in chlorinated wastewater

IF 14 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Asma Batool , Shan Shao , Kartick Chandra Majhi , Azeem Mushtaq , Yi Jiang , Wingkei Ho , Yiu Fai Tsang , Yuhe He , Kenneth Mei Yee Leung , Jason Chun-Ho Lam
{"title":"MnO2-Catalyzed electrocatalytic mineralization of triclosan in chlorinated wastewater","authors":"Asma Batool ,&nbsp;Shan Shao ,&nbsp;Kartick Chandra Majhi ,&nbsp;Azeem Mushtaq ,&nbsp;Yi Jiang ,&nbsp;Wingkei Ho ,&nbsp;Yiu Fai Tsang ,&nbsp;Yuhe He ,&nbsp;Kenneth Mei Yee Leung ,&nbsp;Jason Chun-Ho Lam","doi":"10.1016/j.ese.2025.100559","DOIUrl":null,"url":null,"abstract":"<div><div>The rising concentrations of xenobiotic aromatic compounds in the environment pose significant risks to human and ecosystem health. Developing a universal, environmentally benign, and scalable platform for mineralizing organic pollutants before their release into the environment is therefore crucial. Electrocatalysis can be highly advantageous for wastewater treatment because it is immediately responsive upon applying potential, requires no additional chemicals, and typically uses heterogeneous catalysts. However, achieving efficient electrochemical mineralization of wastewater pollutants at parts-per-million (ppm) levels remains a challenge. Here, we report the use of manganese dioxide (MnO<sub>2</sub>), an Earth-abundant, chemically benign, and cost-effective electrocatalyst, to achieve over 99 % mineralization of triclosan (TCS) and other halogenated phenols at ppm levels. Two highly active MnO<sub>2</sub> phases—α-MnO<sub>2</sub>-CC and δ-MnO<sub>2</sub>-CC—were fabricated on inexpensive carbon cloth (CC) support and evaluated for their ability to oxidatively degrade TCS in pH-neutral conditions, including simulated chlorinated wastewater, real wastewater, and both synthetic and real landfill leachates. Total organic carbon analysis confirmed the effective degradation of TCS. Electron paramagnetic resonance and ultraviolet–visible spectroscopy identified reactive oxygen species, enabling the construction of a detailed TCS degradation pathway. Upon optimization, the TCS removal rate reached 38.38 nmol min<sup>−1</sup>, surpassing previously reported rates achieved with precious and toxic metal co-catalysts. These findings highlight MnO<sub>2</sub>-CC as a promising, eco-friendly electrocatalyst with strong potential for upscaled remediation of organic pollutants in wastewater treatment.</div></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"25 ","pages":"Article 100559"},"PeriodicalIF":14.0000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Ecotechnology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666498425000377","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The rising concentrations of xenobiotic aromatic compounds in the environment pose significant risks to human and ecosystem health. Developing a universal, environmentally benign, and scalable platform for mineralizing organic pollutants before their release into the environment is therefore crucial. Electrocatalysis can be highly advantageous for wastewater treatment because it is immediately responsive upon applying potential, requires no additional chemicals, and typically uses heterogeneous catalysts. However, achieving efficient electrochemical mineralization of wastewater pollutants at parts-per-million (ppm) levels remains a challenge. Here, we report the use of manganese dioxide (MnO2), an Earth-abundant, chemically benign, and cost-effective electrocatalyst, to achieve over 99 % mineralization of triclosan (TCS) and other halogenated phenols at ppm levels. Two highly active MnO2 phases—α-MnO2-CC and δ-MnO2-CC—were fabricated on inexpensive carbon cloth (CC) support and evaluated for their ability to oxidatively degrade TCS in pH-neutral conditions, including simulated chlorinated wastewater, real wastewater, and both synthetic and real landfill leachates. Total organic carbon analysis confirmed the effective degradation of TCS. Electron paramagnetic resonance and ultraviolet–visible spectroscopy identified reactive oxygen species, enabling the construction of a detailed TCS degradation pathway. Upon optimization, the TCS removal rate reached 38.38 nmol min−1, surpassing previously reported rates achieved with precious and toxic metal co-catalysts. These findings highlight MnO2-CC as a promising, eco-friendly electrocatalyst with strong potential for upscaled remediation of organic pollutants in wastewater treatment.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
20.40
自引率
6.30%
发文量
11
审稿时长
18 days
期刊介绍: Environmental Science & Ecotechnology (ESE) is an international, open-access journal publishing original research in environmental science, engineering, ecotechnology, and related fields. Authors publishing in ESE can immediately, permanently, and freely share their work. They have license options and retain copyright. Published by Elsevier, ESE is co-organized by the Chinese Society for Environmental Sciences, Harbin Institute of Technology, and the Chinese Research Academy of Environmental Sciences, under the supervision of the China Association for Science and Technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信