Environmental Science and Ecotechnology最新文献

筛选
英文 中文
Shifting regional development scenarios amplify legacy phosphorus threats to water quality 不断变化的区域发展情景放大了遗留的磷对水质的威胁
IF 14 1区 环境科学与生态学
Environmental Science and Ecotechnology Pub Date : 2025-05-09 DOI: 10.1016/j.ese.2025.100569
Wei Zhan , Yedong Gao , Haoran Zhang , Yu Tian , Yanan Zou , Xiang Li , Huihang Sun , Lipin Li , Yaruo Jin , Jiaxin Cao , Yiming Liu , Nanqi Ren
{"title":"Shifting regional development scenarios amplify legacy phosphorus threats to water quality","authors":"Wei Zhan ,&nbsp;Yedong Gao ,&nbsp;Haoran Zhang ,&nbsp;Yu Tian ,&nbsp;Yanan Zou ,&nbsp;Xiang Li ,&nbsp;Huihang Sun ,&nbsp;Lipin Li ,&nbsp;Yaruo Jin ,&nbsp;Jiaxin Cao ,&nbsp;Yiming Liu ,&nbsp;Nanqi Ren","doi":"10.1016/j.ese.2025.100569","DOIUrl":"10.1016/j.ese.2025.100569","url":null,"abstract":"<div><div>Legacy phosphorus, accumulated from past anthropogenic activities, poses persistent and complex threats to global water quality. Despite extensive efforts to control phosphorus inputs, legacy phosphorus can persist for decades and undermine restoration goals. Emerging evidence suggests that shifts in regional development patterns profoundly reshape the dynamics and environmental risks of legacy phosphorus accumulation and mobilization. However, the mechanisms by which development pattern shifts reshape legacy phosphorus trajectories remain poorly understood. Here we show the complex pathways linking development-driven land-use changes, biogeochemical buffering capacities, and legacy phosphorus mobilization through an integrative modeling framework that couples developmental shift coefficients, anthropogenic phosphorus inventories, and riverine time-lag modeling to diagnose and predict long-term legacy phosphorus risks. Using the Songhua River as a case study, our results reveal that shifts from industrial to agricultural dominance significantly amplify legacy phosphorus accumulation by 86 times. Consequently, legacy phosphorus accounts for 65.4 %–69.9 %, surpassing current-year inputs and becoming the primary driver of riverine pollution. Furthermore, we demonstrate that development shifts systematically alter the dominant controlling factors, from fossil fuel emissions and drainage infrastructure to soil retention characteristics and agricultural practices, reshaping mitigation priorities. Our framework provides a generalizable methodology for quantifying legacy phosphorus risks under dynamic development patterns, offering immediate applications for water quality management. More broadly, this framework offers critical insights that can guide sustainable management strategies for linking evolving regional development patterns with long-term ecological restoration.</div></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"26 ","pages":"Article 100569"},"PeriodicalIF":14.0,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143942365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Global mismatch between ecosystem service supply and demand driven by climate change and human activity 气候变化和人类活动导致的全球生态系统服务供需不匹配
IF 14 1区 环境科学与生态学
Environmental Science and Ecotechnology Pub Date : 2025-05-06 DOI: 10.1016/j.ese.2025.100573
Shiqi Tian , Wei Wu , Shaofeng Chen , Zhe Li , Kai Li
{"title":"Global mismatch between ecosystem service supply and demand driven by climate change and human activity","authors":"Shiqi Tian ,&nbsp;Wei Wu ,&nbsp;Shaofeng Chen ,&nbsp;Zhe Li ,&nbsp;Kai Li","doi":"10.1016/j.ese.2025.100573","DOIUrl":"10.1016/j.ese.2025.100573","url":null,"abstract":"<div><div>Assessing the balance between ecosystem service supply and demand (ESSD) relationship and identifying its driving factors is essential for addressing ecosystem degradation. While previous local-scale studies have highlighted climate change and human activities as critical influences, their roles at a global scale remain poorly understood. Here, we analyze the global dynamics of supply–demand relationships for four key ecosystem services—food production, carbon sequestration, soil conservation, and water yield—over the period 2000–2020. We find that ESSD relationships generally exhibit spatially high supply-low demand and quantitatively surplus characteristics. Climate change and human activity influence ESSD relationships in dual-directional pathways. Specifically, they positively affect food production and soil conservation in 80.69 % and 72.50 % of global regions respectively; while negatively influencing carbon sequestration and water yield in 76.74 % and 62.44 % of global regions respectively. Human activity primarily shapes the ESSD relationships for food production and carbon sequestration, with mean contribution rates of 66.54 % and 60.80 % respectively; whereas climate change exerts greater control over soil conservation and water yield, with mean contribution rates of 54.62 % and 55.41 % respectively. Our findings clarify the direction (positive or negative), mode (individual or combined), contribution rates, and geographic distribution of these impacts. This research closes a critical gap in understanding global ESSD relationships and provides essential insights to inform sustainable ecosystem management from local to global scales.</div></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"26 ","pages":"Article 100573"},"PeriodicalIF":14.0,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143931758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Global antibiotic hotspots and risks: A One Health assessment 全球抗生素热点和风险:同一个健康评估
IF 14 1区 环境科学与生态学
Environmental Science and Ecotechnology Pub Date : 2025-05-01 DOI: 10.1016/j.ese.2025.100564
Bingshuang Yan , Fuyang Huang , Jiaolong Ying , Dafang Zhou , Samira Norouzi , Xianming Zhang , Bin Wang , Fei Liu
{"title":"Global antibiotic hotspots and risks: A One Health assessment","authors":"Bingshuang Yan ,&nbsp;Fuyang Huang ,&nbsp;Jiaolong Ying ,&nbsp;Dafang Zhou ,&nbsp;Samira Norouzi ,&nbsp;Xianming Zhang ,&nbsp;Bin Wang ,&nbsp;Fei Liu","doi":"10.1016/j.ese.2025.100564","DOIUrl":"10.1016/j.ese.2025.100564","url":null,"abstract":"<div><div>Antibiotics are increasingly prevalent in global environments, driving antimicrobial resistance and disrupting microbial cycling. These impacts pose threats to human, animal, and environmental health. Therefore, addressing this emergent issue necessitates a One Health framework that integrates these interconnected dimensions. Here we systematically review 137 antibiotics across diverse global environmental compartments. We find that sulfonamides, macrolides, quinolones, and tetracyclines are globally ubiquitous, particularly prevalent in Asia and Africa, whereas β-lactams dominates in Europe. Hierarchical clustering revealed ten priority antibiotics in liquid phases and eight in solid phases requiring urgent attention. Regional analysis indicated the highest antibiotic concentrations within wastewater treatment plant liquids in the Americas and surface waters in Africa, with generally lower levels detected in Asia and Europe. Utilizing a One Health assessment framework, we integrated Predicted No-Effect Concentrations for antibiotic resistance selection (PNEC<sub>RS</sub>) relevant to human and animal health with Minimum Inhibitory Concentrations (MICs) affecting microbial nitrogen cycling processes. Risk assessment highlighted wastewater treatment plant liquids (20 % average exceedance) and animal manure (44 % average exceedance) as the most critical compartments. Africa exhibited the highest overall risk, averaging a 53 % exceedance rate. Notably, ciprofloxacin and ofloxacin in liquid phases, as well as enrofloxacin and norfloxacin in solid phases, emerged as antibiotics posing significant One Health risks. This study advances our understanding of antibiotic distribution globally, offering a foundation for targeted interventions to mitigate antibiotic-related risks across human, animal, and environmental health sectors.</div></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"25 ","pages":"Article 100564"},"PeriodicalIF":14.0,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143923023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aligning regional carbon neutrality pathways with national climate goals: An integrated analytical framework 调整区域碳中和路径与国家气候目标:一个综合分析框架
IF 14 1区 环境科学与生态学
Environmental Science and Ecotechnology Pub Date : 2025-05-01 DOI: 10.1016/j.ese.2025.100571
Li Zhang , Mingyu Li , Zhe Zhang , Linyan Li , Jin Yuan , Shuying Zhu , Huili Wang , Min Jia , Jianhui Ruan , Lingyun Pang , Yingying Gu , Shu Ye , Xiaojun Chen , Lirong Zhang , Bofeng Cai , Jinnan Wang
{"title":"Aligning regional carbon neutrality pathways with national climate goals: An integrated analytical framework","authors":"Li Zhang ,&nbsp;Mingyu Li ,&nbsp;Zhe Zhang ,&nbsp;Linyan Li ,&nbsp;Jin Yuan ,&nbsp;Shuying Zhu ,&nbsp;Huili Wang ,&nbsp;Min Jia ,&nbsp;Jianhui Ruan ,&nbsp;Lingyun Pang ,&nbsp;Yingying Gu ,&nbsp;Shu Ye ,&nbsp;Xiaojun Chen ,&nbsp;Lirong Zhang ,&nbsp;Bofeng Cai ,&nbsp;Jinnan Wang","doi":"10.1016/j.ese.2025.100571","DOIUrl":"10.1016/j.ese.2025.100571","url":null,"abstract":"<div><div>Under national carbon neutrality targets, energy-producing regions hold significant responsibilities for reducing emissions. Given the diverse economic, industrial, and resource profiles of these regions, tailored strategies are essential for designing regional emission pathways. Currently, a systematic analysis that simultaneously integrates broader national climate objectives and regional heterogeneity is lacking, hindering the formulation of localized roadmaps. To address this gap, we propose an integrated analytical framework combing top-down and bottom-up approaches. It considers macro-level constraints (socio-economic development) and micro-level feasibility (renewable energy potential and forest carbon sinks), incorporating diverse regional characteristics such as resource endowment, energy consumption patterns, and industrial structures. We apply this approach to an energy-producing region in central China. Our analysis highlights the need for a clean energy transition that maintains energy security and meets growing electricity demands. By 2060, wind and solar power are projected to account for 87 % of electricity generation, representing a substantial shift from the current fossil-fuel-dependent structure. Significant reductions in greenhouse gas emissions can be achieved by optimizing the energy structure, enforcing production controls, and deploying advanced technologies across industry, transportation, and buildings. Additionally, enhancing carbon removal strategies will further support emission reduction targets. This framework demonstrates the feasibility of achieving climate objectives in fossil-fuel-dependent regions, providing strategic guidance for integrating regional traits into national decarbonization plans.</div></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"25 ","pages":"Article 100571"},"PeriodicalIF":14.0,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143934642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine learning reveals distinct aquatic organic matter patterns driven by soil erosion types 机器学习揭示了由土壤侵蚀类型驱动的不同水生有机物模式
IF 14 1区 环境科学与生态学
Environmental Science and Ecotechnology Pub Date : 2025-05-01 DOI: 10.1016/j.ese.2025.100570
Yingxin Shang , Kaishan Song , Zhidan Wen , Fengfa Lai , Ge Liu , Hui Tao , Xiangfei Yu
{"title":"Machine learning reveals distinct aquatic organic matter patterns driven by soil erosion types","authors":"Yingxin Shang ,&nbsp;Kaishan Song ,&nbsp;Zhidan Wen ,&nbsp;Fengfa Lai ,&nbsp;Ge Liu ,&nbsp;Hui Tao ,&nbsp;Xiangfei Yu","doi":"10.1016/j.ese.2025.100570","DOIUrl":"10.1016/j.ese.2025.100570","url":null,"abstract":"<div><div>Chromophoric dissolved organic matter (CDOM), characterized by unique optical properties, is an essential indicator for understanding aquatic organic matter dynamics within global carbon cycles. Soil erosion, a major source of CDOM received by lakes, transports terrestrial organic matter to water bodies, altering sources, bioavailability and molecular complexity of CDOM significantly. Yet, the spatial patterns of CDOM in lakes from different soil erosion regions are still unknown. Here, we developed a robust machine learning framework (RMSE<sub>calibration</sub> = 0.87 m<sup>-1</sup>) to estimate CDOM concentrations in lakes by integrating over 1300 <em>in situ</em> water samples with Landsat 8 OLI surface reflectance data. We then applied this model to map the spatial distribution of CDOM across lakes larger than 0.1 km<sup>2</sup> in 2020. Our analysis revealed distinct spatial patterns, with mean CDOM absorption coefficients at 355 nm of 3.73 m<sup>-1</sup> in freeze-thaw erosion regions, 6.31 m<sup>-1</sup> in wind erosion regions, and 3.72 m<sup>-1</sup> in hydraulic erosion regions, reflecting significant variations driven by erosion intensity. Two axes of PCA analysis explained over 48 % variations of CDOM for different soil erosion types. Chemical characterization indicated that polycyclic aromatic predominated in wind and hydraulic erosion regions, whereas freeze-thaw erosion regions exhibited higher proportions of peptides and unsaturated aliphatic compounds. This study highlights the crucial connection between terrestrial soil erosion processes and aquatic DOM composition, providing vital insights for evaluating global carbon cycling and carbon storage within inland ecosystems.</div></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"25 ","pages":"Article 100570"},"PeriodicalIF":14.0,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144071757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Redox regulation for sustainable water purification and risk management 可持续水净化和风险管理的氧化还原调节
IF 14 1区 环境科学与生态学
Environmental Science and Ecotechnology Pub Date : 2025-05-01 DOI: 10.1016/j.ese.2025.100563
Ai-Jie Wang , Rui-Feng Yan , Ke Shi , Hao-Yi Cheng , Jing-Long Han , Bin Liang
{"title":"Redox regulation for sustainable water purification and risk management","authors":"Ai-Jie Wang ,&nbsp;Rui-Feng Yan ,&nbsp;Ke Shi ,&nbsp;Hao-Yi Cheng ,&nbsp;Jing-Long Han ,&nbsp;Bin Liang","doi":"10.1016/j.ese.2025.100563","DOIUrl":"10.1016/j.ese.2025.100563","url":null,"abstract":"<div><div>Sustainable detoxification and advanced treatment of toxic organic pollutants (TOPs) in wastewater are essential for water reclamation and ecosystem security. Although biological treatment is a low-carbon and eco-friendly approach for TOPs degradation, its effectiveness is often limited by the high toxicity and recalcitrance of TOPs. Oxidative and reductive reactions can degrade TOPs according to their intrinsic redox potentials. However, conventional biological or chemical oxidation treatment often fails to efficiently or purposefully cleave key functional groups, which leads to unsatisfactory performance of biological reactions or excessive chemical oxidation costs. This perspective proposes redox regulation as a strategy to moderately catalyse the oxidation or reduction of TOPs and thereby generate low toxicity and increased biodegradable intermediates, which will improve subsequent biological treatment. We summarize strong redox regulation techniques, including advanced oxidation and reduction processes, and weak redox regulation through low-energy electrical potential, along with the corresponding mechanisms and applications. Additionally, we explore the integration of redox regulation with biological treatment, either in a sequential mode or <em>in situ</em>. This study emphasizes the need for future research to focus on targeted and durable catalytic detoxification processes and to optimize balancing the carbon footprint, process control, operational efficiency, and economic feasibility. By integrating chemical reactions with microbial metabolism, redox regulation has the potential to transform wastewater treatment from isolated process optimization to a holistic approach. This perspective advocates for innovation of conventional wastewater detoxification technologies to achieve sustainable water purification and ecological risk control.</div></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"25 ","pages":"Article 100563"},"PeriodicalIF":14.0,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143912772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A life cycle risk assessment of nanopesticides in freshwater 淡水中纳米农药的生命周期风险评估
IF 14 1区 环境科学与生态学
Environmental Science and Ecotechnology Pub Date : 2025-05-01 DOI: 10.1016/j.ese.2025.100565
Mingyan Ke , Keshuo Zhang , Andrea L. Hicks , Fan Wu , Jing You
{"title":"A life cycle risk assessment of nanopesticides in freshwater","authors":"Mingyan Ke ,&nbsp;Keshuo Zhang ,&nbsp;Andrea L. Hicks ,&nbsp;Fan Wu ,&nbsp;Jing You","doi":"10.1016/j.ese.2025.100565","DOIUrl":"10.1016/j.ese.2025.100565","url":null,"abstract":"<div><div>Conventional ecological risk assessments prioritize downstream anthropogenic impacts, overlooking risks arising from upstream processes involving highly hazardous substances and indirect emissions. This narrow focus obscures high-risk hotspots and renders traditional methodologies ill-suited for evaluating novel chemical entities. Nanopesticides, designed for targeted delivery of pesticidal active ingredients, are increasingly deployed to enhance efficiency, yet their altered environmental fate and transport dynamics may reshape end-of-life risks while their full lifecycle impacts remain uncharacterized. Here, we address this gap using imidacloprid (IMI) and its nano-encapsulated variant (nano-IMI) as case studies. By applying life cycle assessment and integrating the USEtox ecotoxicity model with the nano-specific SimpleBox4Nano framework, we quantify \"cradle-to-gate\" environmental impacts and derive substance-specific ecotoxicity metrics, enabling systematic characterization of end-of-life risks associated with these formulations. Production-stage ecological risks of nano-IMI (4.63 × 10<sup>3</sup> CTUe) are approximately four times greater than those for conventional IMI (1.18 × 10<sup>3</sup> CTUe). However, end-of-life freshwater ecological risks from nano-IMI emissions (0.012–6.93 × 10<sup>4</sup> CTUe) are 2–5 orders of magnitude lower compared with IMI (1.59 × 10<sup>3</sup>–6.13 × 10<sup>6</sup> CTUe), accounting for rainfall variability, toxicity data selection, fate, and environmental transport scenarios. Under equivalent rainfall conditions, nano-IMI exhibited up to three orders of magnitude lower integrated life-cycle freshwater ecological risks, underscoring its potential as an environmentally preferable alternative to conventional IMI. This research introduces a comprehensive and novel methodology for evaluating engineered nanomaterial alternatives across realistic environmental scenarios, providing essential insights into nanopesticide risk assessment throughout their lifecycle.</div></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"25 ","pages":"Article 100565"},"PeriodicalIF":14.0,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143923024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Toward accurate and scalable rainfall estimation using surveillance camera data and a hybrid deep-learning framework 使用监控摄像头数据和混合深度学习框架进行准确和可扩展的降雨估计
IF 14 1区 环境科学与生态学
Environmental Science and Ecotechnology Pub Date : 2025-05-01 DOI: 10.1016/j.ese.2025.100562
Fiallos-Salguero Manuel , Soon-Thiam Khu , Jingyu Guan , Mingna Wang
{"title":"Toward accurate and scalable rainfall estimation using surveillance camera data and a hybrid deep-learning framework","authors":"Fiallos-Salguero Manuel ,&nbsp;Soon-Thiam Khu ,&nbsp;Jingyu Guan ,&nbsp;Mingna Wang","doi":"10.1016/j.ese.2025.100562","DOIUrl":"10.1016/j.ese.2025.100562","url":null,"abstract":"<div><div>Rainfall measurement at high quality and spatiotemporal resolution is essential for urban hydrological modeling and effective stormwater management. However, traditional rainfall measurement methods face limitations regarding spatial coverage, temporal resolution, and data accessibility, particularly in urban settings. Here, we show a novel rainfall estimation framework that leverages surveillance cameras to enhance estimation accuracy and spatiotemporal data coverage. Our hybrid approach consists of two complementary modules: the first employs an image-quality signature technique to detect rain streaks from video frames and selects optimal regions of interest (ROIs). The second module integrates depthwise separable convolution (DSC) layers with gated recurrent units (GRU) in a regression model to accurately estimate rainfall intensity using these ROIs. We evaluate the framework using video data from two locations with distinct rainfall patterns and environmental conditions. The DSC–GRU model achieves high predictive performance, with coefficient of determination (R<sup>2</sup>) values ranging from 0.89 to 0.93 when validated against rain gauge measurements. Remarkably, the model maintains strong performance during daytime and nighttime conditions, outperforming existing video-based rainfall estimation methods and demonstrating robust adaptability across variable environmental scenarios. The model's lightweight architecture facilitates efficient training and deployment, enabling practical real-time urban rainfall monitoring. This work represents a substantial advancement in rainfall estimation technology, significantly reducing estimation errors and expanding measurement coverage, and provides a practical, low-cost solution for urban hydrological monitoring.</div></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"25 ","pages":"Article 100562"},"PeriodicalIF":14.0,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143887735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chronic toxicity mechanisms of 6PPD and 6PPD-Quinone in zebrafish 6PPD和6PPD醌对斑马鱼的慢性毒性机制
IF 14 1区 环境科学与生态学
Environmental Science and Ecotechnology Pub Date : 2025-05-01 DOI: 10.1016/j.ese.2025.100567
Fang Jiao , Yang Zhao , Qiang Yue , Qi Wang , Zhongzhi Li , Wanjing Lin , Lingxi Han , Liangfu Wei
{"title":"Chronic toxicity mechanisms of 6PPD and 6PPD-Quinone in zebrafish","authors":"Fang Jiao ,&nbsp;Yang Zhao ,&nbsp;Qiang Yue ,&nbsp;Qi Wang ,&nbsp;Zhongzhi Li ,&nbsp;Wanjing Lin ,&nbsp;Lingxi Han ,&nbsp;Liangfu Wei","doi":"10.1016/j.ese.2025.100567","DOIUrl":"10.1016/j.ese.2025.100567","url":null,"abstract":"<div><div>N-(1,3-Dimethylbutyl)-N′-phenyl-p-phenylenediamine (6PPD) and its oxidation derivative, 6PPD-quinone (6PPDQ), have been extensively detected in environmental and biological samples, raising significant concerns regarding their chronic aquatic toxicity at environmentally relevant concentrations. However, the underlying mechanisms driving this chronic toxicity remain largely unexplored. Here we show that zebrafish exposed to 6PPD and 6PPDQ exhibit distinct toxicokinetic profiles, with 6PPD preferentially accumulating in the liver and 6PPDQ predominantly targeting the brain. Exposure to both compounds impaired zebrafish growth, induced hepatic damage, and disrupted locomotor behavior. Transcriptomic analysis of liver tissue revealed disturbances in lipid and carbohydrate metabolic pathways in both treatment groups, with distinct differences in gene expression patterns and biochemical responses between 6PPD and 6PPDQ. Specifically, both compounds downregulated peroxisome proliferator-activated receptor gamma (PPARγ) and elevated the expression of pro-inflammatory cytokines (TNF-α and IL-6). Molecular dynamics simulations and surface plasmon resonance experiments further demonstrated that hepatotoxicity was associated with direct binding of these compounds to PPARγ, a critical regulator of lipid metabolism and inflammation. Our findings highlight the hepatotoxic risks of 6PPD and 6PPDQ to aquatic life. Importantly, 6PPDQ exhibited greater toxicity compared to 6PPD, emphasizing an urgent need for targeted environmental controls and regulatory actions to mitigate ecological harm and potential public health consequences.</div></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"25 ","pages":"Article 100567"},"PeriodicalIF":14.0,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143934636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A pH-responsive production of hydroxyl radical in Fenton process
IF 14 1区 环境科学与生态学
Environmental Science and Ecotechnology Pub Date : 2025-05-01 DOI: 10.1016/j.ese.2025.100566
Pengyi Wang , Fan Kang , Xiangbin Huang , Zhipeng Luo , Jing Zou , Min Yang , Meng Sun , Xin Yu , Huabin Zeng
{"title":"A pH-responsive production of hydroxyl radical in Fenton process","authors":"Pengyi Wang ,&nbsp;Fan Kang ,&nbsp;Xiangbin Huang ,&nbsp;Zhipeng Luo ,&nbsp;Jing Zou ,&nbsp;Min Yang ,&nbsp;Meng Sun ,&nbsp;Xin Yu ,&nbsp;Huabin Zeng","doi":"10.1016/j.ese.2025.100566","DOIUrl":"10.1016/j.ese.2025.100566","url":null,"abstract":"<div><div>Efficient management of temporal latency and spatial heterogeneity remains a critical challenge in sensor-based pH regulation for smart water management, primarily due to inherent response delays and mass transfer constraints. In oxidation systems with dynamic pH environments, delayed responses can lead to issues such as cyanide release, unwanted side reactions, or pipe damage. To address these challenges, we propose a “pause-then-adjust” control strategy, exploiting the pH-responsive generation of hydroxyl radicals (<sup>•</sup>OH) in a modified Fenton reaction system. This system utilizes hydroxylamine as an electron donor and ethylenediaminetetraacetic acid (EDTA) as a stabilizer for iron ions. Within the pH range of 7.0–10.0, the coexistence of [Fe<sup>2+</sup>-EDTA]<sup>2−</sup> and [Fe<sup>3+</sup>-OH-EDTA]<sup>2−</sup> complexes facilitates efficient electron transfer, resulting in the selective and sustained production of <sup>•</sup>OH radicals. The inherent pH-responsiveness of this strategy enables rapid and spatially coherent adjustments, offering a robust supplementary method for addressing complex and evolving requirements in advanced water treatment systems.</div></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"25 ","pages":"Article 100566"},"PeriodicalIF":14.0,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143942997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信