Environmental Science and Ecotechnology最新文献

筛选
英文 中文
Climate change unveils hidden microbial dangers
IF 14 1区 环境科学与生态学
Environmental Science and Ecotechnology Pub Date : 2025-03-01 DOI: 10.1016/j.ese.2025.100544
Haoxuan Yu
{"title":"Climate change unveils hidden microbial dangers","authors":"Haoxuan Yu","doi":"10.1016/j.ese.2025.100544","DOIUrl":"10.1016/j.ese.2025.100544","url":null,"abstract":"<div><div>Climate change is driving unprecedented transformations in aquatic ecosystems, where microorganisms play a fundamental role in maintaining ecological balance and human health security. Rising water temperatures, pollution intensification, and extreme weather events are driving significant shifts in microbial community structures. These changes facilitate the proliferation of pathogenic microorganisms such as <em>Vibrio cholerae</em> and harmful algae like cyanobacteria, which thrive in warmer, nutrient-enriched environments. The resulting harmful algal blooms release potent toxins, such as microcystins, that contaminate drinking water and food supplies, leading to severe health impacts, including liver diseases and carcinogenesis. Furthermore, antibiotic resistance genes are spreading more rapidly due to climate-induced stressors, increasing the prevalence of antimicrobial-resistant pathogens and compounding the challenges for global health systems. This discussion article demonstrates that climate change influences aquatic microbial ecosystems through interconnected mechanisms, including shifts in gene transfer networks, alterations in microbial metabolism, and ecological feedback loops, ultimately increasing waterborne disease risks and antimicrobial resistance. Specific solutions are proposed, such as advancing wastewater treatment technologies to address climate-induced pollution, establishing global microbial monitoring networks leveraging remote sensing and molecular tools, and implementing early warning systems for waterborne disease outbreaks. Additionally, the discussion article emphasizes the critical role of international cooperation in funding and capacity-building efforts, particularly in developing regions with fragile infrastructures. By highlighting these pressing challenges and proposing actionable strategies, this research underscores the urgent need for integrated approaches to safeguard water resources, mitigate microbial hazards, and enhance public health resilience in an era of accelerating climate change.</div></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"24 ","pages":"Article 100544"},"PeriodicalIF":14.0,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143528650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A quantitative assessment framework for water-related policies in large river basins
IF 14 1区 环境科学与生态学
Environmental Science and Ecotechnology Pub Date : 2025-03-01 DOI: 10.1016/j.ese.2025.100537
Yi-Lin Zhao , Han-Jun Sun , Jie Ding , Ji-Wei Pang , Mei-Yun Lu , Nan-Qi Ren , Shan-Shan Yang
{"title":"A quantitative assessment framework for water-related policies in large river basins","authors":"Yi-Lin Zhao ,&nbsp;Han-Jun Sun ,&nbsp;Jie Ding ,&nbsp;Ji-Wei Pang ,&nbsp;Mei-Yun Lu ,&nbsp;Nan-Qi Ren ,&nbsp;Shan-Shan Yang","doi":"10.1016/j.ese.2025.100537","DOIUrl":"10.1016/j.ese.2025.100537","url":null,"abstract":"<div><div>Effective water management in large river basins requires a comprehensive understanding of policy effectiveness and regulatory frameworks. However, quantitative assessments of water-related policies remain limited. Here, we propose a novel quantitative framework for evaluating water policies in large river basins, providing an intuitive and systematic approach for decision-makers. Using the Yellow River Basin—the second-largest river basin in China—as a case study, we constructed a database of 1271 water-related policies spanning 68 cities. We assessed the completeness of nine representative policies, identifying key gaps in water environment governance. To evaluate management effectiveness, we developed a system integrating two key subsystems: water resource utilization and water environment treatment, incorporating climatic, economic, and industrial factors. Our findings reveal that water environment governance policies were more effective than those targeting water resource utilization, though their impact was delayed by one to two years. Furthermore, a risk-based analysis pinpointed critical water management challenges in each city, offering actionable insights for policy optimization. This framework provides a robust and scalable approach for assessing the effectiveness of complex water policies in large river basins, with global applicability for improving water governance.</div></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"24 ","pages":"Article 100537"},"PeriodicalIF":14.0,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143510982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A holistic approach to evaluating environmental policy impact using a difference-in-differences model
IF 14 1区 环境科学与生态学
Environmental Science and Ecotechnology Pub Date : 2025-03-01 DOI: 10.1016/j.ese.2025.100523
Jianglong Cui , Tiansen Zou , Hengyuan Zhao , Xiaodie Zhang , Guowen Li , Shengwang Gao , Chunjian Lv , Qiuheng Zhu , Lieyu Zhang , Haisheng Li
{"title":"A holistic approach to evaluating environmental policy impact using a difference-in-differences model","authors":"Jianglong Cui ,&nbsp;Tiansen Zou ,&nbsp;Hengyuan Zhao ,&nbsp;Xiaodie Zhang ,&nbsp;Guowen Li ,&nbsp;Shengwang Gao ,&nbsp;Chunjian Lv ,&nbsp;Qiuheng Zhu ,&nbsp;Lieyu Zhang ,&nbsp;Haisheng Li","doi":"10.1016/j.ese.2025.100523","DOIUrl":"10.1016/j.ese.2025.100523","url":null,"abstract":"<div><div>Environmental protection policies (EPPs) play a pivotal role in advancing sustainable development and maintaining ecological balance by establishing clear directives and standards. However, a comprehensive methodology to evaluate the effectiveness of these policies remains underdeveloped. Here, we employ a difference-in-differences (DID) approach to assess the effectiveness of EPPs, using the implementation of the Resident Work (RW) policy as a quasi-natural experiment. Drawing on urban-level panel data from the Yangtze River Basin between 2016 and 2021, we demonstrate that the DID model robustly evaluates the RW policy's impact on water quality improvement. Cities that adopted the RW policy experienced a 0.0098 reduction in water pollution compared to non-adopting cities. A dynamic analysis revealed progressive water quality improvements over time, with stronger effects observed in economically disadvantaged cities. Furthermore, higher policy evaluation scores correlated with greater improvements in water quality. This study highlights the utility of the DID model in quantifying EPP effectiveness and offers a scalable framework for policy evaluation in environmental management.</div></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"24 ","pages":"Article 100523"},"PeriodicalIF":14.0,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143510981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Common antimicrobials disrupt early zebrafish development through immune-cardiac signaling
IF 14 1区 环境科学与生态学
Environmental Science and Ecotechnology Pub Date : 2025-03-01 DOI: 10.1016/j.ese.2025.100543
Yueyue Liu , Chen Wang , Zhiyou Fu , Yingchen Bai , Guomao Zheng , Fengchang Wu
{"title":"Common antimicrobials disrupt early zebrafish development through immune-cardiac signaling","authors":"Yueyue Liu ,&nbsp;Chen Wang ,&nbsp;Zhiyou Fu ,&nbsp;Yingchen Bai ,&nbsp;Guomao Zheng ,&nbsp;Fengchang Wu","doi":"10.1016/j.ese.2025.100543","DOIUrl":"10.1016/j.ese.2025.100543","url":null,"abstract":"<div><div>The global production and use of antimicrobial chemicals surged during and after the COVID-19 pandemic, yet their developmental toxicity in aquatic organisms at environmentally relevant concentrations remains poorly understood. Here, we investigate and compare the developmental effects of two restricted antimicrobial chemicals—triclosan (TCS) and triclocarban (TCC)—and three alternative antimicrobials—benzalkonium chloride (BAC), benzethonium chloride (BEC), and chloroxylenol (CX)—on zebrafish embryos (<em>Danio rerio</em>) at concentrations of 0.4, 4, and 40 μg L<sup>−1</sup>. We find that BAC induces the most severe reduction in hatching rates, followed by TCS, TCC, BEC, and CX. BAC also exhibits the strongest inhibition of heart rate, with toxicity levels comparable to those of TCS and TCC. All tested chemicals, except CX, cause significant teratogenic effects. Transcriptomic analysis reveals substantial disruptions in immune-related coagulation cascades and mitogen-activated protein kinase signaling pathways. Further validation via protein-protein interaction network analysis and real-time quantitative polymerase chain reaction confirms that altered expression of key hub genes in these pathways impacts bone and heart development, as well as immune system function, potentially driving developmental toxicity. This study provides the first systematic comparison of developmental toxicity among currently used antimicrobials at environmentally relevant concentrations, revealing that the alternative antimicrobial BAC poses greater developmental risks than the banned TCS and TCC. These findings raise concerns about the safety of BAC as a widespread substitute and highlight the necessity for more rigorous environmental risk assessments of alternative antimicrobials before their large-scale application.</div></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"24 ","pages":"Article 100543"},"PeriodicalIF":14.0,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143552671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hypersaline organic wastewater treatment: Biotechnological advances and engineering challenges
IF 14 1区 环境科学与生态学
Environmental Science and Ecotechnology Pub Date : 2025-02-18 DOI: 10.1016/j.ese.2025.100542
Yan-Qing Zhang , Jing-Long Han , Hao-Yi Cheng , Hong-Cheng Wang , Tie-Jun Liu , Bin Liang , Ai-Jie Wang
{"title":"Hypersaline organic wastewater treatment: Biotechnological advances and engineering challenges","authors":"Yan-Qing Zhang ,&nbsp;Jing-Long Han ,&nbsp;Hao-Yi Cheng ,&nbsp;Hong-Cheng Wang ,&nbsp;Tie-Jun Liu ,&nbsp;Bin Liang ,&nbsp;Ai-Jie Wang","doi":"10.1016/j.ese.2025.100542","DOIUrl":"10.1016/j.ese.2025.100542","url":null,"abstract":"<div><div>The sustainable treatment of hypersaline organic wastewater (HSOW) remains a significant challenge in industrial wastewater management, as conventional approaches often fail to meet stringent discharge standards and low-carbon sustainability targets. Halotolerant and halophilic microbial strains offer promising solutions, yet their application is hindered by limited stress resistance, thus hindering effective treatment and achieving near-zero liquid discharge. In this review, we systematically examine endogenous strategies, such as microbial mutualism and genetic engineering, alongside exogenous approaches, including functional materials, electrical and magnetic stimulation, and 3D bioprinting, to improve microbial resilience in hypersaline environments. Furthermore, we propose an integrated treatment framework that combines physicochemical and biochemical processes, leveraging biological detoxification and biological desalination to enhance the treatment of HSOW while minimizing environmental impact and carbon emissions. By advancing the understanding of microbial stress adaptation and optimization strategies, this review provides critical insights into the development of sustainable, low-carbon wastewater treatment solutions.</div></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"24 ","pages":"Article 100542"},"PeriodicalIF":14.0,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143465366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Towards sustainable agroecosystems: A life cycle assessment review of soil-biodegradable and traditional plastic mulch films
IF 14 1区 环境科学与生态学
Environmental Science and Ecotechnology Pub Date : 2025-02-12 DOI: 10.1016/j.ese.2025.100541
Oluwatunmise Israel Dada , Teshan Udayanga Habarakada Liyanage , Ting Chi , Liang Yu , Lisa Wasko DeVetter , Shulin Chen
{"title":"Towards sustainable agroecosystems: A life cycle assessment review of soil-biodegradable and traditional plastic mulch films","authors":"Oluwatunmise Israel Dada ,&nbsp;Teshan Udayanga Habarakada Liyanage ,&nbsp;Ting Chi ,&nbsp;Liang Yu ,&nbsp;Lisa Wasko DeVetter ,&nbsp;Shulin Chen","doi":"10.1016/j.ese.2025.100541","DOIUrl":"10.1016/j.ese.2025.100541","url":null,"abstract":"<div><div>The increasing use of traditional agricultural plastic mulch films (PMs) has raised significant environmental concerns, prompting the search for sustainable alternatives. Soil-biodegradable mulch films (BDMs) are often proposed as eco-friendly replacements; however, their widespread adoption remains contentious. This review employs a comparative life cycle assessment perspective to evaluate the environmental impact of PMs and BDMs across their production, use, and end-of-life stages, providing strategies to mitigate their impact on agroecosystems. BDMs generally exhibit lower energy use and greenhouse gas emissions than PMs but contribute to greater land-use demands. Reported eutrophication and acidification potentials are less consistent, varying based on feedstock types and the scope of assessment of BDM, as well as the end-of-life management of PM. The environmental burden of both mulch types is influenced by the life cycle stage, polymer composition, farming practices, additives, film thickness, and local climatic conditions. The manufacturing stage is a major contributor to energy use and greenhouse gas emissions for both PMs and BDMs, despite their shared benefits of increasing crop yields. However, post-use impacts are more pronounced for PMs, driven by end-of-life strategy and adsorbed waste content. While starch-based BDMs offer a more sustainable alternative to PMs, uncertainties regarding the residence time of BDM residues in soil (albeit shorter than PM residues) and their effects on soil health, coupled with higher production costs, impede widespread adoption. For BDM end-of-life, soil biodegradation is recommended. Energy and material recovery options are crucial for PM end-of-life, with mechanical recycling preferred, although it requires addressing eutrophication and human toxicity. This review discusses these complexities within specific contexts and provides actionable insights to guide the sustainable integration of mulch films into agricultural practices.</div></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"24 ","pages":"Article 100541"},"PeriodicalIF":14.0,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143419786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phytoremediation of microplastics by water hyacinth
IF 14 1区 环境科学与生态学
Environmental Science and Ecotechnology Pub Date : 2025-02-11 DOI: 10.1016/j.ese.2025.100540
Jingjing Yin , Tongshan Zhu , Xiaozun Li , Fayuan Wang , Guoxin Xu
{"title":"Phytoremediation of microplastics by water hyacinth","authors":"Jingjing Yin ,&nbsp;Tongshan Zhu ,&nbsp;Xiaozun Li ,&nbsp;Fayuan Wang ,&nbsp;Guoxin Xu","doi":"10.1016/j.ese.2025.100540","DOIUrl":"10.1016/j.ese.2025.100540","url":null,"abstract":"<div><div>Microplastics have emerged as pervasive environmental pollutants, posing significant risks to both terrestrial and aquatic ecosystems worldwide. Current remediation strategies—including physical, chemical, and microbial methods—are inadequate for large-scale, in situ removal of microplastics, highlighting the urgent need for alternative solutions. Phytoremediation, an eco-friendly and cost-effective technology, holds promise in addressing these challenges, though its application to microplastic pollution remains underexplored. Here we show the capacity of <em>Eichhornia crassipes</em> (water hyacinth), a fast-growing, floating aquatic plant, to remove microplastics from contaminated water. Our results show that within 48 h, water hyacinth achieved removal efficiencies of 55.3 %, 69.1 %, and 68.8 % for 0.5, 1, and 2 μm polystyrene particles, respectively, with root adsorption identified as the primary mechanism. Fluorescence microscopy revealed that the extremely large and abundant root caps, featuring a total surface area exceeding 150,000 mm<sup>2</sup> per plant, serve as the principal sites for the entrapment of microplastics. Furthermore, a unique “vascular ring” structure within the stem prevents the translocation of microplastics to aerial tissues, safeguarding leaves for potential downstream applications. This study offers the first microstructural insight into the mechanisms underpinning water hyacinth's exceptional microplastic adsorption capacity and resilience, providing a promising framework for developing phytoremediation strategies to mitigate microplastic pollution in aquatic ecosystems.</div></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"24 ","pages":"Article 100540"},"PeriodicalIF":14.0,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143419784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Urban fabric decoded: High-precision building material identification via deep learning and remote sensing
IF 14 1区 环境科学与生态学
Environmental Science and Ecotechnology Pub Date : 2025-02-03 DOI: 10.1016/j.ese.2025.100538
Kun Sun , Qiaoxuan Li , Qiance Liu , Jinchao Song , Menglin Dai , Xingjian Qian , Srinivasa Raghavendra Bhuvan Gummidi , Bailang Yu , Felix Creutzig , Gang Liu
{"title":"Urban fabric decoded: High-precision building material identification via deep learning and remote sensing","authors":"Kun Sun ,&nbsp;Qiaoxuan Li ,&nbsp;Qiance Liu ,&nbsp;Jinchao Song ,&nbsp;Menglin Dai ,&nbsp;Xingjian Qian ,&nbsp;Srinivasa Raghavendra Bhuvan Gummidi ,&nbsp;Bailang Yu ,&nbsp;Felix Creutzig ,&nbsp;Gang Liu","doi":"10.1016/j.ese.2025.100538","DOIUrl":"10.1016/j.ese.2025.100538","url":null,"abstract":"<div><div>Precise identification and categorization of building materials are essential for informing strategies related to embodied carbon reduction, building retrofitting, and circularity in urban environments. However, existing building material databases are typically limited to individual projects or specific geographic areas, offering only approximate assessments. Acquiring large-scale and precise material data is hindered by inadequate records and financial constraints. Here, we introduce a novel automated framework that harnesses recent advances in sensing technology and deep learning to identify roof and facade materials using remote sensing data and Google Street View imagery. The model was initially trained and validated on Odense's comprehensive dataset and then extended to characterize building materials across Danish urban landscapes, including Copenhagen, Aarhus, and Aalborg. Our approach demonstrates the model's scalability and adaptability to different geographic contexts and architectural styles, providing high-resolution insights into material distribution across diverse building types and cities. These findings are pivotal for informing sustainable urban planning, revising building codes to lower carbon emissions, and optimizing retrofitting efforts to meet contemporary standards for energy efficiency and emission reductions.</div></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"24 ","pages":"Article 100538"},"PeriodicalIF":14.0,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143419785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Towards equitable carbon responsibility: Integrating trade-related emissions and carbon sinks in urban decarbonization
IF 14 1区 环境科学与生态学
Environmental Science and Ecotechnology Pub Date : 2025-02-02 DOI: 10.1016/j.ese.2025.100539
Junliang Wu , Yafei Wang , Shuya Zhang , Yu Zhu , Bingyue Fu , Zhihui Zhang , Hanxi Chen , Shaoqing Chen
{"title":"Towards equitable carbon responsibility: Integrating trade-related emissions and carbon sinks in urban decarbonization","authors":"Junliang Wu ,&nbsp;Yafei Wang ,&nbsp;Shuya Zhang ,&nbsp;Yu Zhu ,&nbsp;Bingyue Fu ,&nbsp;Zhihui Zhang ,&nbsp;Hanxi Chen ,&nbsp;Shaoqing Chen","doi":"10.1016/j.ese.2025.100539","DOIUrl":"10.1016/j.ese.2025.100539","url":null,"abstract":"<div><div>Cities play a pivotal role in global decarbonization, acting as a critical driver of carbon emissions. Accurately allocating carbon mitigation responsibility (CMR) is essential for designing effective and equitable climate policies. How cities manage carbon leakage across boundaries through supply chains and implement plan of increasing forest carbon sinks are important components for designing a fair and inclusive CMR. However, the combined impact of trade-related carbon leakage and forest carbon sinks on CMR allocation remains poorly understood. Here, we develop an integrated CMR allocation framework that accounts for both carbon leakage and variation of forest carbon offsets. When applied to the cities within the Guangdong–Hong Kong–Macao Greater Bay Area in China, it becomes evident that the inclusion of carbon leakage results in substantial alterations in mitigation quotas. Adjustments are observed to vary between ±10 % and 50 % across these cities from 2005 to 2020, a trend that is anticipated to continue until 2035. The redistribution of outsourced emissions through supply chains alleviates the mitigation burden on producer cities by 20–30 %. Additionally, accounting for carbon sinks substantially influences CMR allocation, particularly in forest-rich cities, which may see their carbon budgets increase by up to 10 %. Under an enhanced climate policy scenario, the growth rate of total mitigation quotas from 2025 to 2035 is projected to decrease by 40 % compared to a business-as-usual trajectory, reducing the burden on major producer cities. Our proposed CMR framework provides a robust basis for incentivizing coordinated mitigation efforts, promoting decarbonization in supply chains and enhancement of urban carbon sink capacities.</div></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"24 ","pages":"Article 100539"},"PeriodicalIF":14.0,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143376804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Real-time quantification of activated sludge concentration and viscosity through deep learning of microscopic images
IF 14 1区 环境科学与生态学
Environmental Science and Ecotechnology Pub Date : 2025-01-28 DOI: 10.1016/j.ese.2025.100527
Hewen Li , Yu Tao , Tiefu Xu , Hongcheng Wang , Min Yang , Ying Chen , Aijie Wang
{"title":"Real-time quantification of activated sludge concentration and viscosity through deep learning of microscopic images","authors":"Hewen Li ,&nbsp;Yu Tao ,&nbsp;Tiefu Xu ,&nbsp;Hongcheng Wang ,&nbsp;Min Yang ,&nbsp;Ying Chen ,&nbsp;Aijie Wang","doi":"10.1016/j.ese.2025.100527","DOIUrl":"10.1016/j.ese.2025.100527","url":null,"abstract":"<div><div>The parameters of activatedg sludge are crucial for the daily operation of wastewater treatment plants (WWTPs). In particular, mixed liquor suspended solids (MLSS) and apparent viscosity provide metrics for the biomass and rheological properties of activated sludge. Traditional methods for determining these parameters are time-consuming, require separate measurements for each index, and fail to provide real-time data for future ‘smart’ WWTPs. Here we show a real-time online microscopic image data analysis system that quantitatively identifies MLSS and apparent viscosity. Microscopic videos of activated sludge are captured in lab-scale sequencing batch reactors under chemical oxygen demand shock, yielding 41482 high-quality images. The Xception convolutional neural network architecture is used to establish both qualitative and quantitative correlations between these microscopic images and MLSS/apparent viscosity. The accuracies of qualitative identification for MLSS and apparent viscosity are both higher than 97%, and the quantitative correlation coefficients are 0.95 and 0.96, respectively. This quantitative correlation between microscopic images of activated sludge and its physical parameters, specifically MLSS and apparent viscosity, provides a basis for real-time online measurements of activated sludge parameters in WWTPs.</div></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"24 ","pages":"Article 100527"},"PeriodicalIF":14.0,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143455089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信