Yicheng Yang , Junjie Qiu , Hua Zhang , Pinjing He , Fan Lü
{"title":"How soon will landfilled plastics integrate into the geological carbon cycle?","authors":"Yicheng Yang , Junjie Qiu , Hua Zhang , Pinjing He , Fan Lü","doi":"10.1016/j.ese.2025.100590","DOIUrl":null,"url":null,"abstract":"<div><div>Approximately half of plastic waste ends up in landfills, where fragmentation leads to the leakage of microplastics, nanoplastics, and petrogenic carbon back into ecosystems. However, the timeframe for plastic re-entry into the geological carbon cycle remains unknown. Using landfill-derived field data, we developed a model predicting fragmentation of various polymers into macroplastics, microplastics, fine microplastics, and nanoplastics. We find total waste plastic concentrations range from 85 to 414 mg g<sup>−1</sup>, with microplastic, fine microplastic, and nanoplastic generation rates of 2–69, 0.5–36.8, and 0.04–1.9 mg per g of plastic, respectively. Plastic distribution depends more on landfill depth than disposal age. Polyethylene terephthalate fragments faster than polypropylene or polyethylene. Our model predicts peak microplastic and fine microplastic fractions within 157–382 and 412–2118 years, respectively, with approximately half of the plastic-derived carbon available for geological cycling in 80–208 years. This research helps clarify the environmental fate of pervasive plastic pollution.</div></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"26 ","pages":"Article 100590"},"PeriodicalIF":14.0000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Ecotechnology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666498425000687","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Approximately half of plastic waste ends up in landfills, where fragmentation leads to the leakage of microplastics, nanoplastics, and petrogenic carbon back into ecosystems. However, the timeframe for plastic re-entry into the geological carbon cycle remains unknown. Using landfill-derived field data, we developed a model predicting fragmentation of various polymers into macroplastics, microplastics, fine microplastics, and nanoplastics. We find total waste plastic concentrations range from 85 to 414 mg g−1, with microplastic, fine microplastic, and nanoplastic generation rates of 2–69, 0.5–36.8, and 0.04–1.9 mg per g of plastic, respectively. Plastic distribution depends more on landfill depth than disposal age. Polyethylene terephthalate fragments faster than polypropylene or polyethylene. Our model predicts peak microplastic and fine microplastic fractions within 157–382 and 412–2118 years, respectively, with approximately half of the plastic-derived carbon available for geological cycling in 80–208 years. This research helps clarify the environmental fate of pervasive plastic pollution.
期刊介绍:
Environmental Science & Ecotechnology (ESE) is an international, open-access journal publishing original research in environmental science, engineering, ecotechnology, and related fields. Authors publishing in ESE can immediately, permanently, and freely share their work. They have license options and retain copyright. Published by Elsevier, ESE is co-organized by the Chinese Society for Environmental Sciences, Harbin Institute of Technology, and the Chinese Research Academy of Environmental Sciences, under the supervision of the China Association for Science and Technology.