Frontiers in Nanotechnology最新文献

筛选
英文 中文
Recent advances in Raman and surface enhanced Raman spectroelectrochemistry 拉曼和表面增强拉曼光谱电化学的最新进展
Frontiers in Nanotechnology Pub Date : 2023-05-09 DOI: 10.3389/fnano.2022.1086100
K. Yue, Wang Weipeng, M. Tian, Zou Ting, Chen Junxian, Zhang Zhengjun
{"title":"Recent advances in Raman and surface enhanced Raman spectroelectrochemistry","authors":"K. Yue, Wang Weipeng, M. Tian, Zou Ting, Chen Junxian, Zhang Zhengjun","doi":"10.3389/fnano.2022.1086100","DOIUrl":"https://doi.org/10.3389/fnano.2022.1086100","url":null,"abstract":"Raman spectroscopy could supply the molecular vibrational process giving the detailed information of molecular structure. At the same time, electrochemistry could provide kinetic and thermodynamic processes. Integration of both technology with the general definition of using spectroscopic approaches for assaying the variations triggered through an electrochemistry-based system within an electrochemical cell induces a novel technique, spectroelectrochemistry (SEC). Raman-spectroelectrochemistry possesses interdisciplinary advantages and can further expand the scopes in the fields of analysis and other applications, emphasizing the cutting-edge issues of analytical chemistry, materials science, biophysics, chemical biology, and so on. This review emphasizes on the recent progress of integrated Raman/Surface enhanced Raman scattering-spectroelectrochemistry and aimed to summarize the spectroelectrochemistry device, electrode materials and applications of Raman/Surface enhanced Raman scattering-spectroelectrochemistry over the past several decades. Finally, the key issues, future perspectives and trends in the development of Raman/Surface enhanced Raman scattering-spectroelectrochemistry are discussed.","PeriodicalId":34432,"journal":{"name":"Frontiers in Nanotechnology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46448604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biogenic metallic nanoparticles: biomedical, analytical, food preservation, and applications in other consumable products 生物金属纳米颗粒:生物医学、分析、食品保鲜以及在其他消费品中的应用
Frontiers in Nanotechnology Pub Date : 2023-05-02 DOI: 10.3389/fnano.2023.1175149
Ashwini Kumar, Sunny Shah, T. J. Jayeoye, Akash Kumar, A. Parihar, B. Prajapati, Sudarshan Singh, D. Kapoor
{"title":"Biogenic metallic nanoparticles: biomedical, analytical, food preservation, and applications in other consumable products","authors":"Ashwini Kumar, Sunny Shah, T. J. Jayeoye, Akash Kumar, A. Parihar, B. Prajapati, Sudarshan Singh, D. Kapoor","doi":"10.3389/fnano.2023.1175149","DOIUrl":"https://doi.org/10.3389/fnano.2023.1175149","url":null,"abstract":"Biogenic metallic nanoparticles (BMNPs) are nanostructure materials synthesized through biological processes that have gained significant attention due to their small size and high surface area-to-volume ratio. BMNPs have several advantages over chemically synthesized ones due to their eco-friendly synthesis regimen, sustainability, biocompatibility, and diverse multifarious biomedical applications. Moreover, the superior cytocompatibility and stability due to the capping layer over metallic nanoparticles (MNPs), reduces the like hood of toxicity and side effects, making them a safer alternative to traditional drug delivery methods. Among several promising applications of BMNPs, their antibacterial activity, analytical sensing of heavy metals, and their roles in food preservations have been widely explored. In addition, to drug delivery and imaging, BMNPs have also been investigated for therapeutic activity such as antimicrobial efficacy against the skin and soft tissue nosocomial pathogens and targeting cancer cells in cancer therapy. The present review bestows several characterization techniques involved with MNPs and compressive aspects of the biogenic synthesis of MNPs using agricultural and biological materials, which reduces the cost of synthesis and minimizes the use of hazardous chemicals. The review also focuses on the multifold applications of BMNPs including biomedical, analytical, preservation of food, and in other consumable goods with toxicological aspects.","PeriodicalId":34432,"journal":{"name":"Frontiers in Nanotechnology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43529589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Editorial: Biomedical nanotechnology in cancer diagnostics and treatment 社论:癌症诊断和治疗中的生物医学纳米技术
Frontiers in Nanotechnology Pub Date : 2023-04-28 DOI: 10.3389/fnano.2023.1208544
B. G. Prajapati, Sankha Bhattacharya
{"title":"Editorial: Biomedical nanotechnology in cancer diagnostics and treatment","authors":"B. G. Prajapati, Sankha Bhattacharya","doi":"10.3389/fnano.2023.1208544","DOIUrl":"https://doi.org/10.3389/fnano.2023.1208544","url":null,"abstract":"Our understanding and methodology of conducting medical research and therapeutic procedures have been completely changed by nanotechnology (Deshmukh, 2023). In recent years, the field of biomedical nanotechnology has experienced fast expansion, promising exciting new avenues for the detection and treatment of various diseases, including cancer (Yang and Jiao, 2023). In order to improve patient outcomes, nanotechnology has the potential to increase the accuracy of diagnostic and therapeutic methods in cancer research and therapy. This editorial’s goal is to look into developments in biomedical nanotechnology for the prevention and treatment of cancer. One of the most exciting uses of biomedical nanotechnology is cancer diagnostics. Invasive techniques like biopsies are routinely used in conventional cancer screening approaches, which can be painful for patients and have unfavourable outcomes. Nevertheless, nanoparticles offer an extremely sensitive, noninvasive method for cancer diagnosis (Raab et al., 2024). Nanoparticles are extremely sensitive and selective, and they can be engineered to target compounds, such as cancer biomarkers (Ren et al., 2024). Additionally, they can be engineered to have certain optical, magnetic, or electrical properties that make them perfect for use in diagnostic imaging procedures including magnetic resonance imaging (MRI), computed tomography (CT), and positron emission tomography (PET) scans (Vélez et al., 2022). For instance, it has become possible to create gold nanoparticles that can target and bind to cancer cells, making it possible to scan and detect them. Similarly, iron oxide nanoparticles have been used in MRI to detect liver cancer cells. These nanoparticle-based imaging techniques enable earlier and more precise cancer diagnosis due to their excellent sensitivity and specificity. Nanoparticles have huge potential for cancer treatment as well as diagnosis (Larsen et al., 2024). Nanoparticles that particularly target cancer cells can be developed to deliver therapeutic medications directly to the tumour area. This targeted method can improve therapy efficacy while minimising unwanted effects on healthy tissues. One of the most promising nanoparticle-based cancer treatments is nanodrug delivery. Using nanoparticles, this approach delivers chemotherapy drugs directly to the tumour site (Ferrell et al., 2024). This targeted administration can increase therapy effectiveness while decreasing systemic toxicity by enhancing medication uptake by cancer cells. Nanoparticles can also be used to deliver a variety of cancer treatments, including radiation therapy and gene therapy. For instance, using gold nanoparticles to increase the radiation dose delivered to the tumour OPEN ACCESS","PeriodicalId":34432,"journal":{"name":"Frontiers in Nanotechnology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42196491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application of DNA molecules in nature- inspired technologies: a mini review DNA分子在自然技术中的应用:一个小综述
Frontiers in Nanotechnology Pub Date : 2023-04-28 DOI: 10.3389/fnano.2023.1185429
I. Semchenko, S. Khakhomov
{"title":"Application of DNA molecules in nature- inspired technologies: a mini review","authors":"I. Semchenko, S. Khakhomov","doi":"10.3389/fnano.2023.1185429","DOIUrl":"https://doi.org/10.3389/fnano.2023.1185429","url":null,"abstract":"The DNA molecule is considered as an object of nature-like technologies, with the focus on the special electromagnetic properties of DNA-like helices. This is the difference from the traditional approach to the DNA molecule as the repository of genetic information. DNA-like helices are regarded as artificial micro-resonators, or “meta-atoms,” exhibiting both dielectric and magnetic properties, that are equally pronounced. The article presents methods for creating spatial structures directly from DNA molecules, as well as from DNA-like helices. It is shown that the design of metamaterials and metasurfaces should be carried out considering the special electromagnetic properties of DNA-like helices. This will make it possible to obtain the required properties of metamaterials and metasurfaces and achieve advantages over other types of artificial structures.","PeriodicalId":34432,"journal":{"name":"Frontiers in Nanotechnology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49506405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mirror-terminated Mach-Zehnder interferometer based on SiNOI slot and strip waveguides for sensing applications using visible light 基于SiNOI缝隙和条形波导的镜面端接Mach-Zehnder干涉仪,用于可见光传感应用
Frontiers in Nanotechnology Pub Date : 2023-04-26 DOI: 10.3389/fnano.2023.1121537
A. Sultan, Y. Sabry, Ahmed Samir, Mostafa A. El-Aasser
{"title":"Mirror-terminated Mach-Zehnder interferometer based on SiNOI slot and strip waveguides for sensing applications using visible light","authors":"A. Sultan, Y. Sabry, Ahmed Samir, Mostafa A. El-Aasser","doi":"10.3389/fnano.2023.1121537","DOIUrl":"https://doi.org/10.3389/fnano.2023.1121537","url":null,"abstract":"In this work, a highly sensitive sensor based on silicon nitride (SiN) waveguide is proposed that can be used for gas sensing using visible light. The whole sensor waveguide uses a silicon dioxide (SiO2) cladding while the sensing arm uses a fluidic cladding such as water. The proposed device is based on loop-mirror terminated (LMT) Mach-Zehnder interferometer (MZI), where the reference arm is exposed to the reference SiO2 medium, while the sensing arm is exposed to the sensing medium leading to a change in the refractive index of the waveguide cladding. The sensor performance is overall optimized by optimizing the design performance of all the components of the structure one by one. The waveguide sensitivity of both strip and slot types is analyzed for gaseous medium in order to compare their sensitivities and select the dimensions of the waveguide that results in the highest device sensitivity. Transverse-electric (TE) polarization is considered in this study for strip waveguide, where a higher sensitivity is founded with respect to the transverse-magnetic (TM) polarization. The field confinement in the slot waveguide in the sensing region is investigated and verified with a mode solver, where the optimum dimensions are obtained using finite difference eigenmode and finite difference time domain solvers. With a sensing arm length of 150 μm only, the proposed sensor achieves a device sensitivity of about 1,320 nm/RIU and a figure-of-merit (FOM) as high as 641 RIU−1 at the wavelength of 650 nm, which is the highest reported FOM up to the author’s knowledge. Higher values of the FOM are possible by employing a longer sensing arm.","PeriodicalId":34432,"journal":{"name":"Frontiers in Nanotechnology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41421056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial: Biosynthesis of bio-inspired nanoparticles/nanomaterials and evaluation of their therapeutic potential in the medical field 社论:仿生纳米颗粒/纳米材料的生物合成及其在医学领域的治疗潜力评估
Frontiers in Nanotechnology Pub Date : 2023-04-17 DOI: 10.3389/fnano.2023.1198994
F. A. Almeida, R. Srinivasan, S. Vijayakumar
{"title":"Editorial: Biosynthesis of bio-inspired nanoparticles/nanomaterials and evaluation of their therapeutic potential in the medical field","authors":"F. A. Almeida, R. Srinivasan, S. Vijayakumar","doi":"10.3389/fnano.2023.1198994","DOIUrl":"https://doi.org/10.3389/fnano.2023.1198994","url":null,"abstract":"Recent advancement in nanoscience and nanotechnology has given us scope for developing biomimetic and biocompatible nanoparticles/nanomaterials using natural products. Nanoparticles/nanomaterials exhibit remarkable physicochemical and biological properties, which are entirely distinct from their bulk materials, making them ideal candidates for biological applications. The plant, microorganisms, and biopolymersbased nanoparticles/nanomaterials are highly advantageous compared to those involving chemical reductants. The biological synthesis method uses eco-friendly solvents and nontoxic chemicals and thereby helps in minimizing the release of hazardous wastes to the environment. In recent years, widespread microbial infections and mosquito-borne parasitic diseases have been a major threat to humans. In addition, dreadful diseases like cancer have become more common and bring massive mortality to human populations. Many of the currently available growth inhibitory agents and chemotherapeutics are too expensive, cause drug resistance, and have numerous side effects. In this scenario, developing novel therapeutic agents that are cost-effective, safe, and without any side effects is of utmost importance. The development of biological nanoparticles/nanomaterials either from plants, microorganisms, or biopolymers is the need of the hour. Most of the newly developed bionanoparticles/bionanomaterials are promising and have significantly contributed to preventing ailments. This Research Topic, “Biosynthesis of bio-inspired nanoparticles/nanomaterials and evaluation of their therapeutic potential in the medical field”, aimed to include the synthesis, physicochemical characterization, in vitro and in vivo evaluation of the antimicrobial, anti-biofilm, anti-quorum sensing, antiviral, anti-infective, and anti-cancer properties of bionanoparticles/bionanomaterials, as well as their application in the treatment and diagnosis of diseases. OPEN ACCESS","PeriodicalId":34432,"journal":{"name":"Frontiers in Nanotechnology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44272100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flexible highly conductive films based on expanded graphite /polymer nanocomposites 基于膨胀石墨/聚合物纳米复合材料的柔性高导电薄膜
Frontiers in Nanotechnology Pub Date : 2023-04-12 DOI: 10.3389/fnano.2023.1135835
S. Nista, A. Alaferdov, Y. H. Isayama, L. Mei, S. Moshkalev
{"title":"Flexible highly conductive films based on expanded graphite /polymer nanocomposites","authors":"S. Nista, A. Alaferdov, Y. H. Isayama, L. Mei, S. Moshkalev","doi":"10.3389/fnano.2023.1135835","DOIUrl":"https://doi.org/10.3389/fnano.2023.1135835","url":null,"abstract":"Highly electrically and thermally conducting films of expanded graphite/polymer nanocomposites were fabricated using an approach based on solution mixing methods. The use of Hydroxyethylcellulose and benzylic alcohol based solutions provides efficient dispersion and better exfoliation of multilayer graphene (nanographite) flakes that are further aligned in extended 2D layers forming continuous conductive pathways during lamination (hot calendering) process. Very high electrical conductivity (190 S/cm) was obtained for fabricated layered films. In contrast, for films produced by a conventional mixing and deposition method with acrylic copolymer and the same nanographitic material, with flakes randomly distributed within the composite, much lower conductivities (2.4 S/cm) were obtained.","PeriodicalId":34432,"journal":{"name":"Frontiers in Nanotechnology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44369856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative study of size exclusion chromatography for isolation of small extracellular vesicle from cell-conditioned media, plasma, urine, and saliva 从细胞条件培养基、血浆、尿液和唾液中分离细胞外小泡的尺寸排除色谱的比较研究
Frontiers in Nanotechnology Pub Date : 2023-04-05 DOI: 10.3389/fnano.2023.1146772
H. Contreras, P. Alarcón-Zapata, E. Nova-Lamperti, V. Ormazábal, M. Varas-Godoy, C. Salomon, F. Zúñiga
{"title":"Comparative study of size exclusion chromatography for isolation of small extracellular vesicle from cell-conditioned media, plasma, urine, and saliva","authors":"H. Contreras, P. Alarcón-Zapata, E. Nova-Lamperti, V. Ormazábal, M. Varas-Godoy, C. Salomon, F. Zúñiga","doi":"10.3389/fnano.2023.1146772","DOIUrl":"https://doi.org/10.3389/fnano.2023.1146772","url":null,"abstract":"Introduction: Extracellular vesicles (EVs) are secreted from all types of cells and are involved in the trafficking of proteins, metabolites, and genetic material from cell to cell. According to their biogenesis and physical properties, EVs are often classified as small EVs (including exosomes) or large EVs, and large oncosomes. A variety of methods are used for isolated EVs; however, they have several limitations, including vesicle deformation, reduced particle yield, and co-isolate protein contaminants. Here we present an optimized fast and low-cost methodology to isolate small EVs (30–150 nm) from biological fluids comparing two SEC stationary phases, G200/120 and G200/140 columns. Methods: The optimization parameters considered were a) the selection of the stationary phase, b) the eluate volume per fraction, and c) the selection of the enriched 30–150 nm EVs-fractions. The efficiency and separation profile of each UF/SEC fraction was evaluated by Nanoparticle tracking analysis (NTA), flow cytometry, total protein quantification, and Western blot. Results: Both columns can isolate predominantly small EVs with low protein contaminants from plasma, urine, saliva, and HEK293-derived EV from collection medium. Column G200/ 40 offers a more homogeneous enrichment of vesicles between 30 and 150 nm than G200/120 [76.1 ± 4.4% with an average size of 85.9 ± 3.6 nm (Mode: 72.8 nm)] in the EV collection medium. The enrichment, estimated as the vesicle-to-protein ratio, was 1.3 × 1010 particles/mg protein for G200/40, obtaining a more significant EVs enrichment compared to G200/120. The optimized method delivers 0.8 ml of an EVs-enriched-outcome, taking only 30 min per sample. Using plasma, the enrichment of small EVs from the optimized method was 70.5 ± 0.18%, with an average size of 119.4 ± 6.9 nm (Mode: 120.3 nm), and the enrichment of the vesicle isolation was 4.8 × 1011 particles/mg protein. The average size of urine and saliva -EVs samples was 147.5 ± 3.4 and 111.9 ± 2.5 nm, respectively. All the small EVs isolated from the samples exhibit the characteristic cup-shaped morphology observed by Transmission electron microscopy (TEM). Discussion: This study suggests that the combination of methods is a robust, fast, and improved strategy for isolating small EVs.","PeriodicalId":34432,"journal":{"name":"Frontiers in Nanotechnology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47186866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dopant network processing units as tuneable extreme learning machines 作为可调极限学习机的掺杂网络处理单元
Frontiers in Nanotechnology Pub Date : 2023-03-30 DOI: 10.3389/fnano.2023.1055527
B. van de Ven, U. Alegre-Ibarra, P. J. Lemieszczuk, P. Bobbert, Hans-Christian Ruiz Euler, W. G. van der Wiel
{"title":"Dopant network processing units as tuneable extreme learning machines","authors":"B. van de Ven, U. Alegre-Ibarra, P. J. Lemieszczuk, P. Bobbert, Hans-Christian Ruiz Euler, W. G. van der Wiel","doi":"10.3389/fnano.2023.1055527","DOIUrl":"https://doi.org/10.3389/fnano.2023.1055527","url":null,"abstract":"Inspired by the highly efficient information processing of the brain, which is based on the chemistry and physics of biological tissue, any material system and its physical properties could in principle be exploited for computation. However, it is not always obvious how to use a material system’s computational potential to the fullest. Here, we operate a dopant network processing unit (DNPU) as a tuneable extreme learning machine (ELM) and combine the principles of artificial evolution and ELM to optimise its computational performance on a non-linear classification benchmark task. We find that, for this task, there is an optimal, hybrid operation mode (“tuneable ELM mode”) in between the traditional ELM computing regime with a fixed DNPU and linearly weighted outputs (“fixed-ELM mode”) and the regime where the outputs of the non-linear system are directly tuned to generate the desired output (“direct-output mode”). We show that the tuneable ELM mode reduces the number of parameters needed to perform a formant-based vowel recognition benchmark task. Our results emphasise the power of analog in-matter computing and underline the importance of designing specialised material systems to optimally utilise their physical properties for computation.","PeriodicalId":34432,"journal":{"name":"Frontiers in Nanotechnology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49053314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A rapid direct-differential agglutination assay for Brucella detection using antibodies conjugated with functionalized gold nanoparticles 利用功能化金纳米颗粒偶联抗体进行布鲁氏菌检测的快速直接鉴别凝集试验
Frontiers in Nanotechnology Pub Date : 2023-03-29 DOI: 10.3389/fnano.2023.1132783
R. Hans, P. Yadav, M. Zaman, Rajaram Poolla, D. Thavaselvam
{"title":"A rapid direct-differential agglutination assay for Brucella detection using antibodies conjugated with functionalized gold nanoparticles","authors":"R. Hans, P. Yadav, M. Zaman, Rajaram Poolla, D. Thavaselvam","doi":"10.3389/fnano.2023.1132783","DOIUrl":"https://doi.org/10.3389/fnano.2023.1132783","url":null,"abstract":"Brucellosis is the most widespread and serious zoonotic disease worldwide which affects livestock, sylvatic wildlife, marine dwellers, and humans. It is acquired through Alphaproteobacteria which belong to the genus Brucella and is categorized as a potential bio-threat agent. In this study, we developed a rapid and direct differential whole cell (WC) agglutination-based assay for its on-field detection. The recombinant outer membrane (rOmp28) protein-derived specific mice IgG polyclonal antibodies (pAbs) of Brucella were purified using affinity chromatography and conjugated with functionalized gold nanoparticles (AuNPs) for rapid agglutination. A positive blot of 32 kDa protein revealed specific immuno-reactivity of rOmp28-pAbs using immunoblot analysis. For the synthesis of AuNPs, the conventional “Turkevich method” was optimized at a concentration < 1 mM of gold precursor for obtaining 50-nm-sized particles. Also, their physico-chemical characteristics were analyzed using UV-visible spectrophotometry, Fourier transform infra-red spectroscopy (FT-IR), Raman spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), dynamic light scattering (DLS), zeta potential (ζ, ZP), and fluorescence spectroscopy. Furthermore, these AuNPs were functionalized with N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) to prepare modified carboxylated AuNPs. For bioconjugation with Brucella rOmp28 IgG pAbs, antibody-conjugated functionalized AuNP constructs were prepared and characterized using FT-IR analysis with strong N–H deformations. Subsequently, these bioconjugated AuNPs were used to develop a direct-differential slide agglutination assay with a detection limit of 104 CFU mL−1. The sensitivity of this assay was compared with standard double-antibody sandwich ELISA (S-ELISA) using rOmp28 IgG pAbs with an LOD of 103 CFU mL−1 and a detection range of 102–108 CFU mL−1. No intraspecies cross-reactivity was observed based on evaluation of its specificity with a battery of closely related bacterial species. In conclusion, the increased sensitivity and specificity of the developed agglutination assay obtained using bioconjugated functionalized AuNPs is ≥ 98% for the detection of Brucella. Therefore, it can be used as an alternate rapid method of direct WC detection of bacteria as it is simple, robust, and cost-effective, with minimal time of reaction in the case of early disease diagnosis.","PeriodicalId":34432,"journal":{"name":"Frontiers in Nanotechnology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43843906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信