{"title":"Digital in-memory stochastic computing architecture for vector-matrix multiplication","authors":"Shady O. Agwa, T. Prodromakis","doi":"10.3389/fnano.2023.1147396","DOIUrl":"https://doi.org/10.3389/fnano.2023.1147396","url":null,"abstract":"The applications of the Artificial Intelligence are currently dominating the technology landscape. Meanwhile, the conventional Von Neumann architectures are struggling with the data-movement bottleneck to meet the ever-increasing performance demands of these data-centric applications. Moreover, The vector-matrix multiplication cost, in the binary domain, is a major computational bottleneck for these applications. This paper introduces a novel digital in-memory stochastic computing architecture that leverages the simplicity of the stochastic computing for in-memory vector-matrix multiplication. The proposed architecture incorporates several new approaches including a new stochastic number generator with ideal binary-to-stochastic mapping, a best seeding approach for accurate-enough low stochastic bit-precisions, a hybrid stochastic-binary accumulation approach for vector-matrix multiplication, and the conversion of conventional memory read operations into on-the-fly stochastic multiplication operations with negligible overhead. Thanks to the combination of these approaches, the accuracy analysis of the vector-matrix multiplication benchmark shows that scaling down the stochastic bit-precision from 16-bit to 4-bit achieves nearly the same average error (less than 3%). The derived analytical model of the proposed in-memory stochastic computing architecture demonstrates that the 4-bit stochastic architecture achieves the highest throughput per sub-array (122 Ops/Cycle), which is better than the 16-bit stochastic precision by 4.36x, while still maintaining a small average error of 2.25%.","PeriodicalId":34432,"journal":{"name":"Frontiers in Nanotechnology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49419461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ignacio Rivero Berti, M. Gantner, Santiago Rodriguez, G. A. Islan, W. Fávaro, A. Talevi, G. R. Castro, N. Durán
{"title":"Potential biocide roles of violacein","authors":"Ignacio Rivero Berti, M. Gantner, Santiago Rodriguez, G. A. Islan, W. Fávaro, A. Talevi, G. R. Castro, N. Durán","doi":"10.3389/fnano.2023.1186386","DOIUrl":"https://doi.org/10.3389/fnano.2023.1186386","url":null,"abstract":"Violacein is a pigment produced by Gram-negative bacteria, which has shown several beneficial biological activities. The most relevant activities of violacein include the interference in the physiological activities of biological membranes, inhibition of cell proliferation, antioxidant, and anti-inflammatory activities. Moreover, the antiviral activities of violacein against some enveloped and non-enveloped viruses have also been reported. Violacein showed a wide spectrum of protease inhibition, both experimentally and in silico. Other in silico studies have suggested that violacein binds to the SARS-CoV-2 spike. Empirical physicochemical studies indicate that violacein (or, occasionally, its derivatives) may be administered orally to treat different disorders. In addition, different alternatives to product violacein, and molecular devices for delivery of this pigment are reviewed.","PeriodicalId":34432,"journal":{"name":"Frontiers in Nanotechnology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45123273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eva Susnik, Amelie Bazzoni, Patricia Taladriz-Blanco, Sandor Balog, Aura Maria Moreno-Echeverri, Christina Glaubitz, Beatriz Brito Oliveira, Daniela Ferreira, Pedro Viana Baptista, Alke Petri-Fink, Barbara Rothen-Rutishauser
{"title":"Epidermal growth factor alters silica nanoparticle uptake and improves gold-nanoparticle-mediated gene silencing in A549 cells.","authors":"Eva Susnik, Amelie Bazzoni, Patricia Taladriz-Blanco, Sandor Balog, Aura Maria Moreno-Echeverri, Christina Glaubitz, Beatriz Brito Oliveira, Daniela Ferreira, Pedro Viana Baptista, Alke Petri-Fink, Barbara Rothen-Rutishauser","doi":"10.3389/fnano.2023.1220514","DOIUrl":"10.3389/fnano.2023.1220514","url":null,"abstract":"<p><strong>Introduction: </strong>Delivery of therapeutic nanoparticles (NPs) to cancer cells represents a promising approach for biomedical applications. A key challenge for nanotechnology translation from the bench to the bedside is the low amount of administered NPs dose that effectively enters target cells. To improve NPs delivery, several studies proposed NPs conjugation with ligands, which specifically deliver NPs to target cells via receptor binding. One such example is epidermal growth factor (EGF), a peptide involved in cell signaling pathways that control cell division by binding to epidermal growth factor receptor (EGFR). However, very few studies assessed the influence of EGF present in the cell environment, on the cellular uptake of NPs.</p><p><strong>Methods: </strong>We tested if the stimulation of EGFR-expressing lung carcinomacells A549 with EGF affects the uptake of 59 nm and 422 nm silica (SiO<sub>2</sub>) NPs. Additionally, we investigated whether the uptake enhancement can be achieved with gold NPs, suitable to downregulate the expression of cancer oncogene <i>c-MYC</i>.</p><p><strong>Results: </strong>Our findings show that EGF binding to its receptor results in receptor autophosphorylation and initiate signaling pathways, leading to enhanced endocytosis of 59 nm SiO<sub>2</sub> NPs, but not 422 nm SiO<sub>2</sub> NPs. Additionally, we demonstrated an enhanced gold (Au) NPs endocytosis and subsequently a higher downregulation of <i>c-MYC</i>.</p><p><strong>Discussion: </strong>These findings contribute to a better understanding of NPs uptake in the presence of EGF and that is a promising approach for improved NPs delivery.</p>","PeriodicalId":34432,"journal":{"name":"Frontiers in Nanotechnology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7615298/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43844522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Malte Becher, J. Jagosz, C. Bock, A. Ostendorf, E. Gurevich
{"title":"Formation of low- and high-spatial frequency laser-induced periodic surface structures (LIPSSs) in ALD-deposited MoS2","authors":"Malte Becher, J. Jagosz, C. Bock, A. Ostendorf, E. Gurevich","doi":"10.3389/fnano.2023.1227025","DOIUrl":"https://doi.org/10.3389/fnano.2023.1227025","url":null,"abstract":"The formation of laser-induced periodic surface structures (LIPSSs) on the atomic layer-deposited (ALD) molybdenum disulfide (MoS2) upon femtosecond laser processing is studied experimentally. Laser-processing parameters such as average laser power and the scan speed at which the formation of the periodic nanostructures takes place are identified. Optical and scanning electron microscopy are applied to identify the parameter regions for the different LIPSS formations and transitions between them. High- and low-spatial frequency LIPSS (HSFL and LSFL) with two distinct periods λLSFL ≈ 1.1 μm and λHSFL ≈ 83 nm can be observed. The HSFL are dominating at higher and the LSFL at lower laser average powers. Formation of LIPSS is found to inhibit laser ablation at lower scan speeds.","PeriodicalId":34432,"journal":{"name":"Frontiers in Nanotechnology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46912852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Editorial: Emerging memories, circuits, and systems for post-Moore computing applications in nanotechnology","authors":"Ying‐Chen Chen, A. Amirsoleimani, Yao‐Feng Chang","doi":"10.3389/fnano.2023.1233885","DOIUrl":"https://doi.org/10.3389/fnano.2023.1233885","url":null,"abstract":"","PeriodicalId":34432,"journal":{"name":"Frontiers in Nanotechnology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42213086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Editorial: Global excellence in nanotechnology: United States","authors":"S. Wallen","doi":"10.3389/fnano.2023.1239130","DOIUrl":"https://doi.org/10.3389/fnano.2023.1239130","url":null,"abstract":"","PeriodicalId":34432,"journal":{"name":"Frontiers in Nanotechnology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42348355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Editorial: The molecular underpinnings of nanoscale semiconductor synthesis","authors":"H. Ripberger, Samantha M Harvey, B. Cossairt","doi":"10.3389/fnano.2023.1229232","DOIUrl":"https://doi.org/10.3389/fnano.2023.1229232","url":null,"abstract":"Colloidal semiconductor nanocrystals have attracted considerable attention over the past several decades due to their size-dependent optoelectronic properties, which have driven their integration into cutting-edge applications ranging from LEDs and displays to quantum computing and biosensing. The utility of these materials stems from their solution processability, broad absorption profiles, narrow photoluminescence emission, and surfaces that can be easily modulated. Wet chemical synthesis of these materials provides a versatile space for development of new compositions, morphologies, heterostructures, and coordination environments simply by changing precursors, ligands, concentrations, and temperatures. Mechanistic studies into molecular and cluster intermediates during formation can direct researchers towards better control over synthetic outcomes. Furthermore, the high surface to volume ratios inherent to nanocrystals makes the study of their surfaces and their stabilizing ligands particularly important, with surface accessibility controlling reaction and charge transfer rates in catalytic applications and photovoltaics. We organized this Research Topic to highlight some of the recent advances in the field of nanocrystal synthesis. We are particularly interested in understanding the reactions that make and modify nanocrystals at the atomic level, including precursor conversion, ligand exchange, and cluster formation and dissolution. By understanding the molecular underpinnings of nanoscale semiconductor synthesis, it becomes possible to control end products and their properties. Precursor reactivity gates the nucleation and growth of nanocrystals in colloidal syntheses. In the synthesis of WSe2, tungsten hexacarbonyl is often used as the metal precursor, which typically requires high reaction temperatures to force the cleavage of the strongW–CO bond. Schimpf and colleagues demonstrate thatW–CO bond labilization, and hence the availability of tungsten metal for subsequent monomer formation, can be tuned through the inclusion of common ligands such as trioctylphosphine (TOP) and trioctylphosphine oxide (TOPO) (Geisenhoff et al.). Using IR spectroscopy for reaction monitoring in the presence of TOPO, the authors noted W(CO)6 rapidly decomposes into W(CO)6-x(TOPO)x, which promoted rapid nucleation of WSe2 nanocrystals and lower reaction temperatures. The structural assignment of this intermediate was corroborated through the growth of a diffraction-quality single crystal of the triarylphosphine analogue W(CO)5(TPPO) (TPPO = triphenylphosphine oxide). On the other hand, the use of strongly coordinating triphenylphosphine (TPP) was found to sequester tungsten as W(CO)5(TPP), OPEN ACCESS","PeriodicalId":34432,"journal":{"name":"Frontiers in Nanotechnology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45305928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Editorial: The DNA molecule as an object of nanotechnology and the creation of helical-structured metamaterials and metasurfaces","authors":"I. Semchenko, S. Khakhomov, Jicheng Wang","doi":"10.3389/fnano.2023.1217459","DOIUrl":"https://doi.org/10.3389/fnano.2023.1217459","url":null,"abstract":"The spring of 2023 marks the 70th anniversary of the discovery of the DNA structure by eminent scientists, later Nobel laureates James Watson and Francis Crick (Watson and Crick, 1953). The years that followed confirmed the importance of a great scientific discovery, which gave a real impetus to endless research on the DNA molecule, its structure, properties and possible applications. It is no exaggeration to say that the DNA molecule is the source and basis of numerous technologies in various fields of human activity. This Research Topic compiles a variety of contributions (very few have been published recently) highlighting new types of analysis and methods for more effective work with DNA data, simulated and real, obtained via different methods. These approaches let us shed light on the mechanisms of DNA organization, focusing on the relationship between DNA structure, function and dynamics, as well as consider The DNA molecule as an object of nanotechnology and the creation of helical-structured metamaterials and metasurfaces. The Research Topic is between biophysics, nanotechnology, chemical and biomedical engineering, and the articles presented by scientists from various fields make it possible to convey to the reader a variety of research methods related to this Research Topic, as well as to put this into a broader context. The first article on this Research Topic (Hu et al.) presents a mini-review summarizing the latest advances in the development of endogenous stimulus-sensitive DNA nanostructures featuring precise self-assembly, targeted delivery and controlled release of drugs for cancer theranostics. This mini review briefly discusses the diverse dynamic DNA nanostructures aiming at bioimaging and biomedicine, including DNA self-assembling materials, DNA origami structures, DNA hydrogels, etc., elaborate the working principles of DNA nanostructures activated by biomarkers (e.g., miRNA, mRNA, and proteins) in tumor cells and microenvironments of tumor tissue (e.g., pH, ATP, and redox gradient). Applications of the endogenous stimuli-responsive DNA nanostructures in biological imaging probes for detecting cancer hallmarks as well as intelligent carriers for drug release in vivo are discussed. In conclusion, the current challenges of DNA OPEN ACCESS","PeriodicalId":34432,"journal":{"name":"Frontiers in Nanotechnology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47616920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Boxuan Yang, Ceri J Richards, Timea B Gandek, Isa de Boer, Itxaso Aguirre-Zuazo, Else Niemeijer, Christoffer Åberg
{"title":"Following nanoparticle uptake by cells using high-throughput microscopy and the deep-learning based cell identification algorithm Cellpose","authors":"Boxuan Yang, Ceri J Richards, Timea B Gandek, Isa de Boer, Itxaso Aguirre-Zuazo, Else Niemeijer, Christoffer Åberg","doi":"10.3389/fnano.2023.1181362","DOIUrl":"https://doi.org/10.3389/fnano.2023.1181362","url":null,"abstract":"How many nanoparticles are taken up by human cells is a key question for many applications, both within medicine and safety. While many methods have been developed and applied to this question, microscopy-based methods present some unique advantages. However, the laborious nature of microscopy, in particular the consequent image analysis, remains a bottleneck. Automated image analysis has been pursued to remedy this situation, but offers its own challenges. Here we tested the recently developed deep-learning based cell identification algorithm Cellpose on fluorescence microscopy images of HeLa cells. We found that the algorithm performed very well, and hence developed a workflow that allowed us to acquire, and analyse, thousands of cells in a relatively modest amount of time, without sacrificing cell identification accuracy. We subsequently tested the workflow on images of cells exposed to fluorescently-labelled polystyrene nanoparticles. This dataset was then used to study the relationship between cell size and nanoparticle uptake, a subject where high-throughput microscopy is of particular utility.","PeriodicalId":34432,"journal":{"name":"Frontiers in Nanotechnology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42401524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Soojin Jeong, Rebecca X Skalla, Yi Wang, Baixu Zhu, Xingchen Ye
{"title":"Elucidating the role of seed structure in the heterometallic seeded growth of copper-based nanocrystals","authors":"Soojin Jeong, Rebecca X Skalla, Yi Wang, Baixu Zhu, Xingchen Ye","doi":"10.3389/fnano.2023.1163390","DOIUrl":"https://doi.org/10.3389/fnano.2023.1163390","url":null,"abstract":"Seed-mediated synthesis is a versatile method to prepare multimetallic nanocrystals for diverse applications. However, many fundamental questions remain on how the structural and chemical properties of nanocrystal seeds control the reaction pathways, especially for nonaqueous synthesis at elevated temperatures. Herein, we elucidate the role of surface ligands and crystallinity of Au nanocrystal seeds on the heterometallic seeded growth of Cu-based nanocrystals. We found that weakly coordinating ligands are critical to facilitate the diffusion between Au and Cu, which enables subsequent one-dimensional growth of Cu. Replacing multiple-twinned Au seeds with single-crystalline ones switched the growth pathway to produce heterostructured nanocrystals. Our work illustrates the importance of precise control of seed characteristics for the predictive synthesis of structurally complex multimetallic nanocrystals.","PeriodicalId":34432,"journal":{"name":"Frontiers in Nanotechnology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48203551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}