{"title":"层状GeI2:热电应用的宽禁带半导体","authors":"Archit Dhingra","doi":"10.3389/fnano.2022.1095291","DOIUrl":null,"url":null,"abstract":"Layered GeI2 is a two-dimensional wide-bandgap van der Waals semiconductor, which is theorized to be a promising material for thermoelectric applications. While the value of the experimentally extrapolated indirect optical bandgap of GeI2 is found to be consistent with the existing theoretical calculations, its potential as a thermoelectric material still lacks experimental validation. In this Perspective, recent experimental efforts aimed towards investigating its dynamical properties and tuning its bandgap further, via intercalation, are discussed. A thorough understanding of its dynamical properties elucidates the extent of electron-phonon scattering in this system, knowledge of which is crucial in order to open pathways for future studies aiming to realize GeI2-based thermoelectric devices.","PeriodicalId":34432,"journal":{"name":"Frontiers in Nanotechnology","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2022-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Layered GeI2: A wide-bandgap semiconductor for thermoelectric applications–A perspective\",\"authors\":\"Archit Dhingra\",\"doi\":\"10.3389/fnano.2022.1095291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Layered GeI2 is a two-dimensional wide-bandgap van der Waals semiconductor, which is theorized to be a promising material for thermoelectric applications. While the value of the experimentally extrapolated indirect optical bandgap of GeI2 is found to be consistent with the existing theoretical calculations, its potential as a thermoelectric material still lacks experimental validation. In this Perspective, recent experimental efforts aimed towards investigating its dynamical properties and tuning its bandgap further, via intercalation, are discussed. A thorough understanding of its dynamical properties elucidates the extent of electron-phonon scattering in this system, knowledge of which is crucial in order to open pathways for future studies aiming to realize GeI2-based thermoelectric devices.\",\"PeriodicalId\":34432,\"journal\":{\"name\":\"Frontiers in Nanotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2022-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fnano.2022.1095291\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fnano.2022.1095291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Layered GeI2: A wide-bandgap semiconductor for thermoelectric applications–A perspective
Layered GeI2 is a two-dimensional wide-bandgap van der Waals semiconductor, which is theorized to be a promising material for thermoelectric applications. While the value of the experimentally extrapolated indirect optical bandgap of GeI2 is found to be consistent with the existing theoretical calculations, its potential as a thermoelectric material still lacks experimental validation. In this Perspective, recent experimental efforts aimed towards investigating its dynamical properties and tuning its bandgap further, via intercalation, are discussed. A thorough understanding of its dynamical properties elucidates the extent of electron-phonon scattering in this system, knowledge of which is crucial in order to open pathways for future studies aiming to realize GeI2-based thermoelectric devices.