He Kang, Nayeon Kim, Seonuk Jeon, Hyun Wook Kim, E. Hong, Seyoung Kim, Jiyong Woo
{"title":"电化学RAM突触阵列节能权值更新分析","authors":"He Kang, Nayeon Kim, Seonuk Jeon, Hyun Wook Kim, E. Hong, Seyoung Kim, Jiyong Woo","doi":"10.3389/fnano.2022.1034357","DOIUrl":null,"url":null,"abstract":"While electro-chemical RAM (ECRAM)-based cross-point synaptic arrays are considered to be promising candidates for energy-efficient neural network computational hardware, array-level analyses to achieve energy-efficient update operations have not yet been performed. In this work, we fabricated CuOx/HfOx/WOx ECRAM arrays and demonstrated linear and symmetrical weight update capabilities in both fully parallel and sequential update operations. Based on the experimental measurements, we showed that the source-drain leakage current (ISD) through the unselected ECRAM cells and resultant energy consumption—which had been neglected thus far—contributed a large portion to the total update energy. We showed that both device engineering to reduce ISD and the selection of an update scheme—for example, column-by-column—that avoided ISD intervention via unselected cells were key to enable energy-efficient neuromorphic computing.","PeriodicalId":34432,"journal":{"name":"Frontiers in Nanotechnology","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Analysis of electro-chemical RAM synaptic array for energy-efficient weight update\",\"authors\":\"He Kang, Nayeon Kim, Seonuk Jeon, Hyun Wook Kim, E. Hong, Seyoung Kim, Jiyong Woo\",\"doi\":\"10.3389/fnano.2022.1034357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While electro-chemical RAM (ECRAM)-based cross-point synaptic arrays are considered to be promising candidates for energy-efficient neural network computational hardware, array-level analyses to achieve energy-efficient update operations have not yet been performed. In this work, we fabricated CuOx/HfOx/WOx ECRAM arrays and demonstrated linear and symmetrical weight update capabilities in both fully parallel and sequential update operations. Based on the experimental measurements, we showed that the source-drain leakage current (ISD) through the unselected ECRAM cells and resultant energy consumption—which had been neglected thus far—contributed a large portion to the total update energy. We showed that both device engineering to reduce ISD and the selection of an update scheme—for example, column-by-column—that avoided ISD intervention via unselected cells were key to enable energy-efficient neuromorphic computing.\",\"PeriodicalId\":34432,\"journal\":{\"name\":\"Frontiers in Nanotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2022-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fnano.2022.1034357\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fnano.2022.1034357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Analysis of electro-chemical RAM synaptic array for energy-efficient weight update
While electro-chemical RAM (ECRAM)-based cross-point synaptic arrays are considered to be promising candidates for energy-efficient neural network computational hardware, array-level analyses to achieve energy-efficient update operations have not yet been performed. In this work, we fabricated CuOx/HfOx/WOx ECRAM arrays and demonstrated linear and symmetrical weight update capabilities in both fully parallel and sequential update operations. Based on the experimental measurements, we showed that the source-drain leakage current (ISD) through the unselected ECRAM cells and resultant energy consumption—which had been neglected thus far—contributed a large portion to the total update energy. We showed that both device engineering to reduce ISD and the selection of an update scheme—for example, column-by-column—that avoided ISD intervention via unselected cells were key to enable energy-efficient neuromorphic computing.