IEEE Open Journal of Antennas and Propagation最新文献

筛选
英文 中文
A Single Radiator-Based Circularly Polarized Antenna for Indoor Wireless Communication Applications 用于室内无线通信应用的基于单辐射器的圆极化天线
IF 3.5
IEEE Open Journal of Antennas and Propagation Pub Date : 2024-06-12 DOI: 10.1109/OJAP.2024.3413020
Heng-Tung Hsu;Yi-Fan Tsao;Arpan Desai
{"title":"A Single Radiator-Based Circularly Polarized Antenna for Indoor Wireless Communication Applications","authors":"Heng-Tung Hsu;Yi-Fan Tsao;Arpan Desai","doi":"10.1109/OJAP.2024.3413020","DOIUrl":"10.1109/OJAP.2024.3413020","url":null,"abstract":"This paper introduces a novel technique for inducing circular polarization in a single radiator through the implementation of a sequentially rotated feeding network. Analogous to the operational principles of sequentially rotated antennas employing multiple radiators, the creation of circular polarization (CP) with a solitary radiator becomes achievable through the distinctive phase and angular arrangement facilitated by the feeding network. This innovative approach not only results in a substantial reduction in complexity but also contributes to an overall reduction in antenna size, all while upholding commendable CP performance in terms of both axial ratio (AR) bandwidth and beamwidth.","PeriodicalId":34267,"journal":{"name":"IEEE Open Journal of Antennas and Propagation","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10555371","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141935290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Consequences of the Potential Gauging Process for Modeling Electromagnetic Wave Propagation 电位测量过程对电磁波传播建模的影响
IF 3.5
IEEE Open Journal of Antennas and Propagation Pub Date : 2024-06-12 DOI: 10.1109/OJAP.2024.3412162
Thomas Reum
{"title":"Consequences of the Potential Gauging Process for Modeling Electromagnetic Wave Propagation","authors":"Thomas Reum","doi":"10.1109/OJAP.2024.3412162","DOIUrl":"10.1109/OJAP.2024.3412162","url":null,"abstract":"This predominantly theoretical article focuses on a qualitative discussion of peculiarities, which are introduced in practical electromagnetic (EM) wave propagation scenarios when the gauge for the electrodynamic potentials is not chosen in accordance to the appropriate space-time metric of the underlying physical framework. Based on ordinary vector calculus, this is done for the viewpoint of radio frequency (RF) engineers by using two examples of guided EM waves: one large-scale case of a terrestrial scenario and one small-scale case involving a device level setup. Readers may benefit especially from this practical orientation, since gauging is often analyzed primarily mathematical by solely arguing on terms of equations instead of discussing concrete applications. The provided context aims to enhance the usual perspective and is applicable for a wide class of situations involving various wave types at any frequency.","PeriodicalId":34267,"journal":{"name":"IEEE Open Journal of Antennas and Propagation","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10555318","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141935286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unbalanced-Fed TCDA Performance Improvement Using a Scan Impedance Model 利用扫描阻抗模型提高非平衡馈电 TCDA 性能
IF 3.5
IEEE Open Journal of Antennas and Propagation Pub Date : 2024-06-12 DOI: 10.1109/OJAP.2024.3413012
Eric D. Robinson;Carey M. Rappaport
{"title":"Unbalanced-Fed TCDA Performance Improvement Using a Scan Impedance Model","authors":"Eric D. Robinson;Carey M. Rappaport","doi":"10.1109/OJAP.2024.3413012","DOIUrl":"10.1109/OJAP.2024.3413012","url":null,"abstract":"Unbalanced-fed Tightly-Coupled Dipole Arrays (TCDAs) allow for the realization of ultrawideband, wide-scanning phased arrays without the need for baluns, which may increase size, weight, and cost. However, unbalanced-fed TCDAs often have additional radiating modes and common-mode resonances which may degrade performance. In this paper, a scan impedance model is presented which describes performance in terms of a combination of even and odd monopole and dipole radiating modes. An intermodal coupling term is included to account for performance when scanning in the E-plane. Each mode is calculated individually in a full-wave solver and the model is then validated by comparing the proposed combination to a full simulation of the unbalanced-fed TCDA. A coaxial extension technique is then introduced to increase the impedance of the monopole-like radiating even mode, allowing the unbalanced-fed array to match the performance of the balanced-fed version without shorting posts or significant redesign of the elements or lattice.","PeriodicalId":34267,"journal":{"name":"IEEE Open Journal of Antennas and Propagation","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10555425","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141935288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Improved Uniaxial Perfectly Matched Layer Based on Finite Element Method for Hyperbolic Media 基于有限元法的改进型双曲介质单轴完全匹配层
IF 3.5
IEEE Open Journal of Antennas and Propagation Pub Date : 2024-06-11 DOI: 10.1109/OJAP.2024.3412410
Na Liu;Yansheng Gong;Rui Xu;Huanyang Chen;Guoxiong Cai
{"title":"An Improved Uniaxial Perfectly Matched Layer Based on Finite Element Method for Hyperbolic Media","authors":"Na Liu;Yansheng Gong;Rui Xu;Huanyang Chen;Guoxiong Cai","doi":"10.1109/OJAP.2024.3412410","DOIUrl":"10.1109/OJAP.2024.3412410","url":null,"abstract":"Recently, hyperbolic media (HM) has attracted considerable interest due to their open isofrequency contour (IFC) and high-k modes, while their numerical computational methods in infinite space are challenging. Although the uniaxial perfectly matched layer (UPML) has been successfully utilized, its failure in absorbing electromagnetic waves with HM has been shown in recent research. In this work, the reason for the failure is thoroughly analyzed, and an improved UPML is proposed based on the frequency domain finite element method (FEM) to truncate the unbound hyperbolic computational domain. Finally, the excellent absorption effect of the improved UPML is verified by representative examples such as an infinite HM, a linear-crossing metamaterial, and a Bessel beam.","PeriodicalId":34267,"journal":{"name":"IEEE Open Journal of Antennas and Propagation","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10552830","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141935295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sub-THz Conformal Lens Integrated WR3.4 Antenna for High-Gain Beam-Steering 用于高增益波束赋形的亚千赫共形透镜集成 WR3.4 天线
IF 3.5
IEEE Open Journal of Antennas and Propagation Pub Date : 2024-06-11 DOI: 10.1109/OJAP.2024.3412282
Akanksha Bhutani;Joel Dittmer;Luca Valenziano;Thomas Zwick
{"title":"Sub-THz Conformal Lens Integrated WR3.4 Antenna for High-Gain Beam-Steering","authors":"Akanksha Bhutani;Joel Dittmer;Luca Valenziano;Thomas Zwick","doi":"10.1109/OJAP.2024.3412282","DOIUrl":"10.1109/OJAP.2024.3412282","url":null,"abstract":"This paper demonstrates the first conformal lens-integrated rectangular waveguide antenna that achieves high-gain beam-steering in the sub-THz range of 230 GHz to 330 GHz, to the best of the authors’ knowledge. The antenna consists of a \u0000<inline-formula> <tex-math>$2 times 32$ </tex-math></inline-formula>\u0000 array of elliptical slots (E-slots) fed by a standard WR3.4 rectangular waveguide, ensuring that the antenna operates in its dominant TE10 mode. The E-slots are spaced by less than half of the guided wavelength, which causes them to be fed with a constant phase difference, thus leading to a progressive phase shift along the antenna aperture. Consequently, the antenna main lobe steers from -71° to -16° as the operating frequency varies from 230 GHz to 330 GHz, respectively. The WR3.4 antenna gain is enhanced by integrating it with a conformal plano-convex parabolic lens. The conformal lens is designed taking into consideration the phase center of multiple steered beams, which leads to a significant gain enhancement of up to 10 dB over the complete beam-steering range. The conformal lens integrated WR3.4 antenna achieves a peak antenna gain of up to 30 dBi. An antenna prototype is manufactured using a mechanical assembly concept based on standard computerized numerical control (CNC) milling and a laser ablation process. For the prototype, a WR3.4 waveguide with an H-plane bend and a short termination is fabricated in a brass split-block module using CNC milling. The E-slots are ablated on a \u0000<inline-formula> <tex-math>$mathrm {125~mu text { m} }$ </tex-math></inline-formula>\u0000 thick aluminum (Al) sheet using a picosecond laser. Furthermore, a laser-structured die attach foil is interposed between the Al sheet and the brass split-block module to minimize the contact resistance between the E-slots and the WR3.4 waveguide. Additionally, a standard WR3.4 flange is manufactured to facilitate the antenna measurement.The conformal lens-integrated WR3.4 antenna has a compact size of \u0000<inline-formula> <tex-math>$ {mathrm {65~text {m}text {m} }} times {mathrm {30~text {m}text {m} }} times {mathrm {32.35~text {m}text {m} }}$ </tex-math></inline-formula>\u0000. It achieves the largest beam-steering range combined with the highest peak antenna gain in the broadband sub-THz range of 230 GHz to 330 GHz published to date.","PeriodicalId":34267,"journal":{"name":"IEEE Open Journal of Antennas and Propagation","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10552815","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141935293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A State-of-the-Art Survey on Advanced Electromagnetic Design: A Machine-Learning Perspective 先进电磁设计的最新研究:机器学习视角
IF 3.5
IEEE Open Journal of Antennas and Propagation Pub Date : 2024-06-11 DOI: 10.1109/OJAP.2024.3412609
Masoud Salmani Arani;Reza Shahidi;Lihong Zhang
{"title":"A State-of-the-Art Survey on Advanced Electromagnetic Design: A Machine-Learning Perspective","authors":"Masoud Salmani Arani;Reza Shahidi;Lihong Zhang","doi":"10.1109/OJAP.2024.3412609","DOIUrl":"10.1109/OJAP.2024.3412609","url":null,"abstract":"Research on electromagnetic (EM) components is essential to enabling the design and optimization of such devices as antennas and filters, leading to improved functionality, reduced costs, and enhanced overall performance. This paper presents an overview of recent developments in optimization and design automation techniques for EM-component design and modeling. Limitations of conventional optimization methods are discussed, while the need for novel machine learning techniques capable of handling multiple objectives and large design spaces is highlighted. In this study, existing methods in the literature are reviewed from four viewpoints: structural view, algorithm view, component view, and application view. Different schemes in distinct design stages or applications are examined with advantages and drawbacks laid out for easier comprehension. Finally, to broaden the scope of optimization in the field of EM design and modeling, some prospective trends are pointed out to shed light on emerging research hotspots.","PeriodicalId":34267,"journal":{"name":"IEEE Open Journal of Antennas and Propagation","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10552823","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141935289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wideband and High-Efficiency Circularly Polarized Unit-Cell for X and Ka-Band Transmitarrays 用于 X 波段和 Ka 波段发射阵列的宽带高效圆极化单元电池
IF 3.5
IEEE Open Journal of Antennas and Propagation Pub Date : 2024-06-10 DOI: 10.1109/OJAP.2024.3409746
Alessandro de Oliveira Cabral Junior;Hamza Kaouach;André Barka
{"title":"Wideband and High-Efficiency Circularly Polarized Unit-Cell for X and Ka-Band Transmitarrays","authors":"Alessandro de Oliveira Cabral Junior;Hamza Kaouach;André Barka","doi":"10.1109/OJAP.2024.3409746","DOIUrl":"10.1109/OJAP.2024.3409746","url":null,"abstract":"This paper presents a novel approach for linear to circular polarization (LP-CP) conversion in transmitarray antennas. The proposed conversion mechanism differs significantly from previous published realizations. The concept utilizes a transmission line modeling-based excitation technique, in which a centralized via excitation is split into two striplines carefully designed to balance excitations and guarantee a phase quadrature. The striplines are embedded at the center of the patch antenna allowing a compact footprint and a simple design structure. The applied true-time delay (TTD) technique assures the radiation of a wideband and low axial ratio circularly polarized (CP) field. To optimize bandwidth and transmission efficiency, a stacked patch configuration is also employed, allowing for simultaneous high polarization conversion and transmission efficiency. The unit-cell design methodology is detailed, and two transmitarray designs are realized in both X and Ka bands. Experimental results from a fabricated X-band \u0000<inline-formula> <tex-math>$20 times 20$ </tex-math></inline-formula>\u0000 cell array prototype demonstrate a peak aperture efficiency of 30%, accompanied by a simultaneous 16% -1 dB gain and 1 dB axial ratio bandwidths. Furthermore, the measured wideband and highly efficient Ka-band transmitarray with a \u0000<inline-formula> <tex-math>$70 times 70$ </tex-math></inline-formula>\u0000 cell array confirmed a remarkable gain of 39.8 dB and 55% aperture efficiency at 29 GHz, surpassing previous LP-CP transmitarray antennas, while maintaining axial ratio values below 1 dB in a bandwidth larger than 26%.","PeriodicalId":34267,"journal":{"name":"IEEE Open Journal of Antennas and Propagation","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10552367","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141935294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multibeam Compact Reflectarray Antenna With Low Scan Loss and Wide-Angle Performance Using a Multi-Feed Configuration 采用多馈源配置、扫描损耗低且具有广角性能的多波束紧凑型反射阵列天线
IF 3.5
IEEE Open Journal of Antennas and Propagation Pub Date : 2024-06-06 DOI: 10.1109/OJAP.2024.3410678
Andrés Gómez-Álvarez;Álvaro F. Vaquero;Manuel Arrebola;Marcos Rodriguez Pino
{"title":"Multibeam Compact Reflectarray Antenna With Low Scan Loss and Wide-Angle Performance Using a Multi-Feed Configuration","authors":"Andrés Gómez-Álvarez;Álvaro F. Vaquero;Manuel Arrebola;Marcos Rodriguez Pino","doi":"10.1109/OJAP.2024.3410678","DOIUrl":"10.1109/OJAP.2024.3410678","url":null,"abstract":"In this article, two multibeam reflectarray antennas are presented for Ka-band in a multi-feed configuration. Both feature a wide-angle scanning range with very low scan losses. They are designed using an iterative optimization process based on a phase-only optimization (POO) which allows fine control over the gain for each beam. The phase responses of the lattice cells are selected taking into account the illumination levels and radiation requirements of all feeds in the system. Minimization of scanning losses and overall antenna compactness are prioritized in the design. The feeding elements are placed along a tilted arc with a low F/D of 0.58. Compared to other beam scanning reflectarray designs in the literature, inter-feed blockage is avoided and thus simultaneous multibeam operation is supported. The two reflectarray designs are implemented using a unit cell with low losses and high angular stability, and they operate in different orthogonal linear polarizations. They are manufactured and measured, showing very low scan losses of 0.5 dB and 1.4 dB across a ±45-degree scanning range, while having maximum gain levels of 28.2 dBi and 29.4 dBi respectively. Moreover, they present extremely low beam squint across the evaluated 3 GHz band, and a measured 1 dB fractional bandwidth over 6.8% and 10%.","PeriodicalId":34267,"journal":{"name":"IEEE Open Journal of Antennas and Propagation","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10550926","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141935291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
State of the Art on Advancements in Wireless Capsule Endoscopy Telemetry: A Systematic Approach 无线胶囊内窥镜遥测技术的最新进展:系统方法
IF 3.5
IEEE Open Journal of Antennas and Propagation Pub Date : 2024-06-05 DOI: 10.1109/OJAP.2024.3409827
Sara Fontana;Simona D’Agostino;Alessandra Paffi;Paolo Marracino;Marco Balucani;Giancarlo Ruocco;Salvatore Maria Aglioti;Francesca Apollonio;Micaela Liberti
{"title":"State of the Art on Advancements in Wireless Capsule Endoscopy Telemetry: A Systematic Approach","authors":"Sara Fontana;Simona D’Agostino;Alessandra Paffi;Paolo Marracino;Marco Balucani;Giancarlo Ruocco;Salvatore Maria Aglioti;Francesca Apollonio;Micaela Liberti","doi":"10.1109/OJAP.2024.3409827","DOIUrl":"10.1109/OJAP.2024.3409827","url":null,"abstract":"In the last decades an innovative technique has emerged in clinical gastroenterology as a compelling alternative to the traditional wired endoscopy, known as Wireless Capsule Endoscopy (WCE). Such cutting-edge application is able to investigate the gastrointestinal (GI) tract through a miniaturized, swallowable and biocompatible capsule, equipped with electronic components. This allows for the noninvasive measurement of biological data, that is then sent to an external receiving unit through a wireless link. This systematic review prepared according to PRISMA guidelines focuses on the main technological advances of data transmission from the in-body ingestible capsule to an external receiver. A total of 142 studies were screened from a comprehensive literature search, performed in Scopus, Science Direct, and IEEE Xplore database. A final number of 47 met the inclusion criteria and were included in the review. The results highlight innovative technologies to optimize the wireless link efficacy and safety to an external receiver. High gain, wideband, omnidirectional radiation pattern, and low levels of specific absorption rate (SAR) are of crucial importance. Despite the capsule telemetry design being rather advanced, the bulk of the existing studies focus on the transmission unit design, rather than the receiving one. Moreover, comprehensive numerical studies on realistic human body models are lacking.","PeriodicalId":34267,"journal":{"name":"IEEE Open Journal of Antennas and Propagation","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10549967","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141935292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Novel Theoretical Modeling of the Received Power for Phased Array-Based Wireless Power Transfer System in the Near-Field Region 基于相控阵的近场区无线电力传输系统接收功率的新型理论建模
IF 4
IEEE Open Journal of Antennas and Propagation Pub Date : 2024-05-30 DOI: 10.1109/ojap.2024.3407658
Nabanita Saha, Erik Pineda ALVAREZ, Ifana MAHBUB
{"title":"A Novel Theoretical Modeling of the Received Power for Phased Array-Based Wireless Power Transfer System in the Near-Field Region","authors":"Nabanita Saha, Erik Pineda ALVAREZ, Ifana MAHBUB","doi":"10.1109/ojap.2024.3407658","DOIUrl":"https://doi.org/10.1109/ojap.2024.3407658","url":null,"abstract":"","PeriodicalId":34267,"journal":{"name":"IEEE Open Journal of Antennas and Propagation","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141197376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信