A Numerical Integration Method for Calculating the Bit Error Rate of Time-Modulated Array

IF 3.5 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Kexin Wang;Jian Zhang;Gang Xin;Xue Lei;Jun Gao;Tianpeng Li
{"title":"A Numerical Integration Method for Calculating the Bit Error Rate of Time-Modulated Array","authors":"Kexin Wang;Jian Zhang;Gang Xin;Xue Lei;Jun Gao;Tianpeng Li","doi":"10.1109/OJAP.2024.3510759","DOIUrl":null,"url":null,"abstract":"In this paper, we present a novel approach for computing the bit error rate of time-modulated array using the Laplace inversion integral. We express the bit error rate as a Laplace inversion integral and select the integration path using the saddle point method. The integration result is obtained through numerical integration, and we derive the upper bound of the truncation error. The time-modulated array under consideration includes a single pole double throw switch array, which can independently exist in two states. This calculation method can be readily extended to time-modulated arrays with multiple states. To assess the accuracy of this method, we provide an example for verification and comparison with the results of exact calculations. The findings demonstrate consistency between the two methods while significantly reducing computational complexity.","PeriodicalId":34267,"journal":{"name":"IEEE Open Journal of Antennas and Propagation","volume":"6 1","pages":"326-331"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10777086","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Antennas and Propagation","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10777086/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present a novel approach for computing the bit error rate of time-modulated array using the Laplace inversion integral. We express the bit error rate as a Laplace inversion integral and select the integration path using the saddle point method. The integration result is obtained through numerical integration, and we derive the upper bound of the truncation error. The time-modulated array under consideration includes a single pole double throw switch array, which can independently exist in two states. This calculation method can be readily extended to time-modulated arrays with multiple states. To assess the accuracy of this method, we provide an example for verification and comparison with the results of exact calculations. The findings demonstrate consistency between the two methods while significantly reducing computational complexity.
一种计算时调阵列误码率的数值积分法
本文提出了一种利用拉普拉斯反演积分计算时调制阵列误码率的新方法。我们将误码率表示为拉普拉斯反演积分,并使用鞍点法选择积分路径。通过数值积分得到积分结果,并推导出截断误差的上界。所考虑的时调制阵列包括单极双掷开关阵列,该阵列可以独立存在于两种状态。这种计算方法可以很容易地推广到具有多个状态的时调制阵列。为了评估该方法的准确性,我们提供了一个实例进行验证,并与精确计算结果进行了比较。研究结果证明了两种方法之间的一致性,同时显著降低了计算复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.50
自引率
12.50%
发文量
90
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信