IEEE Open Journal of Antennas and Propagation最新文献

筛选
英文 中文
IEEE Open Journal of Antennas and Propagation Instructions for authors 面向作者的IEEE天线和传播指南开放期刊
IF 3.6
IEEE Open Journal of Antennas and Propagation Pub Date : 2025-08-12 DOI: 10.1109/OJAP.2025.3576019
{"title":"IEEE Open Journal of Antennas and Propagation Instructions for authors","authors":"","doi":"10.1109/OJAP.2025.3576019","DOIUrl":"https://doi.org/10.1109/OJAP.2025.3576019","url":null,"abstract":"","PeriodicalId":34267,"journal":{"name":"IEEE Open Journal of Antennas and Propagation","volume":"6 4","pages":"C3-C3"},"PeriodicalIF":3.6,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11122684","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144831866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE ANTENNAS AND PROPAGATION SOCIETY 天线与传播学会
IF 3.6
IEEE Open Journal of Antennas and Propagation Pub Date : 2025-08-12 DOI: 10.1109/OJAP.2025.3576023
{"title":"IEEE ANTENNAS AND PROPAGATION SOCIETY","authors":"","doi":"10.1109/OJAP.2025.3576023","DOIUrl":"https://doi.org/10.1109/OJAP.2025.3576023","url":null,"abstract":"","PeriodicalId":34267,"journal":{"name":"IEEE Open Journal of Antennas and Propagation","volume":"6 4","pages":"C2-C2"},"PeriodicalIF":3.6,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11122681","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144831727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Single-Bit Reconfigurable Folded Reflectarray/Transmitarray Antenna 一种单比特可重构折叠反射阵/发射阵天线
IF 3.6
IEEE Open Journal of Antennas and Propagation Pub Date : 2025-04-30 DOI: 10.1109/OJAP.2025.3565661
Manting Wang;Jiachen Du;Dashuang Liao;Chi Hou Chan
{"title":"A Single-Bit Reconfigurable Folded Reflectarray/Transmitarray Antenna","authors":"Manting Wang;Jiachen Du;Dashuang Liao;Chi Hou Chan","doi":"10.1109/OJAP.2025.3565661","DOIUrl":"https://doi.org/10.1109/OJAP.2025.3565661","url":null,"abstract":"In this study, a novel receiving-transmitting (RA-TA) metasurface unit cell is introduced for folded transmitarray/reflectarray antennas (FTAs/FRAs). The unit cell comprises two substrates with an air gap to ensure optimal transmission and integration of PIN diodes. Polarizer grids are employed for selecting desired polarization while each grid metal provides DC bias independently to a single unit cell with two PIN diodes surface-mounted and their orientation perpendicular to each other, i.e., along ±45°, respectively, enabling 1-bit phase compensation and polarization conversion. Thus, the proposed antenna achieves 1-bit reconfigurability and maintains polarization consistency with the feeding source. Additionally, unlike conventional FTAs and FRAs that necessitate a “±1” voltage configuration, the proposed unit cell offers cost-effectiveness and design simplicity by independently providing a positive voltage to each PIN diode. Thus, the unit cell finds application in FTA for 1-bit beam scanning and FRA for dual-beam operation in both the x- and y-directions, depending on voltage configurations. A 15 × 15 FRA array is fabricated and experimentally demonstrated to validate the proposed concept. This design provides potential applications in wireless communications, particularly in multiple input and multiple output (MIMO) systems.","PeriodicalId":34267,"journal":{"name":"IEEE Open Journal of Antennas and Propagation","volume":"6 4","pages":"1156-1165"},"PeriodicalIF":3.6,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10980345","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144831710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Wideband and Low-SAR Antenna Design at 2.45 GHz for Biomedical Applications 生物医学用2.45 GHz宽带低sar天线设计
IF 3.6
IEEE Open Journal of Antennas and Propagation Pub Date : 2025-04-30 DOI: 10.1109/OJAP.2025.3565837
Sami Ullah Khan;Muhammad Aamir;Muhammad Abbas;Uzman Ali;Usman Ali;Sadiq Ullah;Abdul Basir;Toni Björninen
{"title":"A Wideband and Low-SAR Antenna Design at 2.45 GHz for Biomedical Applications","authors":"Sami Ullah Khan;Muhammad Aamir;Muhammad Abbas;Uzman Ali;Usman Ali;Sadiq Ullah;Abdul Basir;Toni Björninen","doi":"10.1109/OJAP.2025.3565837","DOIUrl":"https://doi.org/10.1109/OJAP.2025.3565837","url":null,"abstract":"In this paper, a miniaturized implantable antenna is designed for biomedical applications operating within the industrial, scientific, and medical band (ISM, 2.4–2.48 GHz). The proposed implantable antenna has a compact size of <inline-formula> <tex-math>$5.5times 5.5times 0$ </tex-math></inline-formula>.64 mm3 and is manufactured using a biocompatible substrate, Roger RO3010 with permittivity of <inline-formula> <tex-math>$ varepsilon _{r} = 10.2 quad text {and} quad text {loss tangent of}~ , tan (delta)=0.0022 $ </tex-math></inline-formula>. To enhance safety, a superstrate and a silicon coating around the antenna are employed to isolate the antenna from the surrounding biological tissues. The simulation software from the HFSS and CST studio suite was utilized to simulate and optimize the proposed implantable antenna, followed by fabrication and testing. The simulation of the proposed antenna was evaluated in terms of its reflection coefficient and gain within a three-layered body phantom, while the testing of the proposed design was carried out using minced pork. The proposed implantable antenna exhibits an 811 MHz bandwidth and a −21 dBi measured gain at 2.45 GHz. Furthermore, for safety evaluation, the specific absorption rate (SAR) analysis was conducted and was found to be within standard limits. The simulated and measured results show a strong correlation, demonstrating that the antenna delivers state-of-the-art performance for implantable biomedical applications.","PeriodicalId":34267,"journal":{"name":"IEEE Open Journal of Antennas and Propagation","volume":"6 4","pages":"1166-1174"},"PeriodicalIF":3.6,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10980331","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144831709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dielectric EBG Leaky-Wave Antenna: Design and Experimental Validation 介电EBG漏波天线:设计与实验验证
IF 3.6
IEEE Open Journal of Antennas and Propagation Pub Date : 2025-04-25 DOI: 10.1109/OJAP.2025.3564352
Ludovica Tognolatti;Paolo Baccarelli;Cristina Ponti;Silvio Ceccuzzi;Vakhtang Jandieri;Giuseppe Schettini
{"title":"Dielectric EBG Leaky-Wave Antenna: Design and Experimental Validation","authors":"Ludovica Tognolatti;Paolo Baccarelli;Cristina Ponti;Silvio Ceccuzzi;Vakhtang Jandieri;Giuseppe Schettini","doi":"10.1109/OJAP.2025.3564352","DOIUrl":"https://doi.org/10.1109/OJAP.2025.3564352","url":null,"abstract":"This paper proposes a novel Electromagnetic Band-Gap (EBG) leaky-wave antenna (LWA) operating in the K-band with enhanced directivity at broadside. A rigorous method that combines the analysis of the band diagrams of Bloch waves propagating within two-dimensional (2-D) EBG structures and the properties of bound and leaky modes in transversely open lattice waveguides is used to design the antenna. For the first time, a three-dimensional (3-D) realistic configuration of the EBG structure is designed, manufactured, and measured in the K-band. An effective leaky-wave approach is applied in conjunction with the use of “ad-hoc” and commercial EM full-wave software for the accurate design of the structure to be realized. The prototype consists of <inline-formula> <tex-math>$7times {times }8$ </tex-math></inline-formula> alumina cylinders positioned above a ground plane and supported by two vertical metal plates. The antenna is fed by two counterphase monopoles. A rat-race hybrid junction, located just below the antenna, feeds the two monopoles. The measurements show a very good agreement with the adopted leaky-wave model. Experimental results show a broadside directivity of 12.8 dBi and a return loss of 24 dB at the frequency of <inline-formula> <tex-math>$f = 24.6$ </tex-math></inline-formula> GHz. The design reported operates in the K-band in reason of its application for the project PRIN 2017 WPT4WID under grant 2017YJE9XK005.","PeriodicalId":34267,"journal":{"name":"IEEE Open Journal of Antennas and Propagation","volume":"6 4","pages":"1126-1134"},"PeriodicalIF":3.6,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10976693","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144831743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multipolar On-Resonance Interference for Super-Gain Electrically Small Dielectric Resonator Antenna (ESDRA) Design 超增益电小介质谐振器天线(ESDRA)设计中的多极非共振干扰
IF 3.6
IEEE Open Journal of Antennas and Propagation Pub Date : 2025-04-25 DOI: 10.1109/OJAP.2025.3564481
Ahmed Abdelraheem;Duhan Eroglu;Karim Seddik;Dimitrios Peroulis
{"title":"Multipolar On-Resonance Interference for Super-Gain Electrically Small Dielectric Resonator Antenna (ESDRA) Design","authors":"Ahmed Abdelraheem;Duhan Eroglu;Karim Seddik;Dimitrios Peroulis","doi":"10.1109/OJAP.2025.3564481","DOIUrl":"https://doi.org/10.1109/OJAP.2025.3564481","url":null,"abstract":"Wheeler’s definition of an electrically small antenna is one circumscribed by a one-radian sphere <inline-formula> <tex-math>$(kalt 1)$ </tex-math></inline-formula>. The electrical size ka approximates the highest-order multipole contributing to radiation. Thus, antenna miniaturization should consider the excited multipoles. Following this definition, current literature lacks references to electrically small dielectric resonator antennas (ESDRAs) in the microwave regime. One reason is the lack of design approaches that monitor and engineer the excited multipoles in the dielectric resonator. In this study, a Mie scattering-based approach is proposed, employing multipolar decomposition to tailor the dielectric resonator multipoles. The poor radiation efficiency associated with small size <inline-formula> <tex-math>$(kalt 1)$ </tex-math></inline-formula> is remedied by on-resonance multipole overlapping, subsequently increasing aperture efficiency and gain. Two simple single-ported ESDRAs with the smallest reported ka of 0.99 and 0.62 are presented. Driven by a deeply subwavelength, poorly radiating elementary electric dipole, high-efficiency ESDRAs are obtained. The presented ESDRAs have similar geometrical configurations yet drastically different radiation characteristics: unidirectional and magnetic omnidirectional patterns, 2.2 dB and 1.9 dB peak realized gains, 166% and 403% aperture efficiencies, 66% and 86% radiation efficiencies, −41 dB and −25 dB reflection losses, and 42% and 64% smaller size than the smallest reported ESDRA in the microwave regime—<inline-formula> <tex-math>$ka {=}1.7$ </tex-math></inline-formula>.","PeriodicalId":34267,"journal":{"name":"IEEE Open Journal of Antennas and Propagation","volume":"6 4","pages":"1135-1155"},"PeriodicalIF":3.6,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10976707","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144831723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electromagnetic Analysis of Radio Propagation in Fresh Water and Measurement by Axial Mode Helical Antenna at 433 MHz 淡水中无线电传播的电磁分析及433 MHz轴向型螺旋天线测量
IF 3.6
IEEE Open Journal of Antennas and Propagation Pub Date : 2025-04-21 DOI: 10.1109/OJAP.2025.3562609
Afiza Nur Binti Jaafar;Hajar Ja’Afar;Yoshihide Yamada;Nurul Huda Abd Rahman;Naobumi Michishita;Norsiha Zainudin;Fatemeh Sedeghikia;Rina Abdullah
{"title":"Electromagnetic Analysis of Radio Propagation in Fresh Water and Measurement by Axial Mode Helical Antenna at 433 MHz","authors":"Afiza Nur Binti Jaafar;Hajar Ja’Afar;Yoshihide Yamada;Nurul Huda Abd Rahman;Naobumi Michishita;Norsiha Zainudin;Fatemeh Sedeghikia;Rina Abdullah","doi":"10.1109/OJAP.2025.3562609","DOIUrl":"https://doi.org/10.1109/OJAP.2025.3562609","url":null,"abstract":"In the next generation of 6G mobile system, communication network will be extending to the underwater area. Underwater comprises of seawater and freshwater areas. Recently, the need of communication tools in freshwater are rising particularly in remote sensing, monitoring, aquaculture and surveillance operations in lakes and rivers. Previous studies were limited to some experiment data in propagation attenuation and low-gain antenna configurations. Previously, because antenna performances in the water condition was not clearly analysed, radio link design could not well discuss. In this paper, antenna design and electrical performance in underwater use is clarified. Then, analysis of electric field distributions underwater and radio link design equation are clarified using electromagnetic simulations. A frequency of 433 MHz is selected from the ISM band. For a high gain antenna, an axial mode helical antenna is selected because of structural simplicity and adaptability of gain change by changing number of turns. The antenna is placed in a capsule to prevent direct contact with surrounding water. In order to achieve effective antenna gain, it is shown to fill the capsule with distilled water of zero conductivity. In the analysis of radio propagation, the increment of power density degradation at distance is compared between simulation and theoretical results. From the good agreement of simulation and theoretical results, effectiveness of antenna gain in the water condition is ensured. To evaluate the link design equation, simulation results for both the transmitting and receiving conditions of the antenna were obtained. It is clarified that the Friis transmission formula is useful for the link design equation. Finally, propagation measurement results at a swimming pool of 1.2-meter depth are compared with the simulation results. It is noted that water surface reflections disturb propagation attenuation.","PeriodicalId":34267,"journal":{"name":"IEEE Open Journal of Antennas and Propagation","volume":"6 4","pages":"1112-1125"},"PeriodicalIF":3.6,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10970736","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144831721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Additive Manufacturing of Antennas and RF Components for SATCOM: A Review 卫星通信天线和射频组件的增材制造研究进展
IF 3.6
IEEE Open Journal of Antennas and Propagation Pub Date : 2025-04-18 DOI: 10.1109/OJAP.2025.3562292
Hafsa Talpur;Ulan Myrzakhan;Juan Andres Vásquez-Peralvo;Shuai Zhang;Symeon Chatzinotas
{"title":"Additive Manufacturing of Antennas and RF Components for SATCOM: A Review","authors":"Hafsa Talpur;Ulan Myrzakhan;Juan Andres Vásquez-Peralvo;Shuai Zhang;Symeon Chatzinotas","doi":"10.1109/OJAP.2025.3562292","DOIUrl":"https://doi.org/10.1109/OJAP.2025.3562292","url":null,"abstract":"In the past few years, additive manufacturing (AM) technology has developed into a revolutionary factor in the design and manufacturing of satellite RF/antenna components, providing benefits over traditional manufacturing techniques, such as cost-efficient, lightweight structure, complex design flexibility, and monolithically integrates different parts in signal structure. AM profoundly impacts how satellite antennas, waveguides, and other RF components are manufactured and deployed across several orbital regimes. However, complex atmospheric conditions in space primarily affect satellite system performance, degrading antenna efficiency and longevity. This is due to many reasons, mainly extreme thermal cycle variation, atmospheric radiations, vacuum environment, and mechanical pressure; hence the choice of AM technique and material are crucial for onboard satellite components design to ensure system performance stability. Based on the latest research, this paper provides a review of current state-of-the-art AM printed antennas and RF components incorporating different AM techniques and materials to obtain specific design characteristics such as high gain, wide bandwidth, beamforming, and better power handling capacity, particularly for Ku, K, and Ka-band satellite communication (SATCOM). Furthermore, the paper highlights some techniques to enhance the performance of existing AM technologies and material properties, making them suitable for onboard SATCOM applications that withstand extreme atmospheric conditions. The paper serves as a valuable guide on the AM of SATCOM antenna/RF component design, providing insights into material selection and AM techniques for efficient fabrication.","PeriodicalId":34267,"journal":{"name":"IEEE Open Journal of Antennas and Propagation","volume":"6 4","pages":"943-977"},"PeriodicalIF":3.6,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10970055","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144831724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of Orthogonal Modes in a Periodic Structure and Application to Two-Separate Beams Steering Within the Same Frequency Band 周期结构正交模态的研究及其在同一频带内两束独立转向中的应用
IF 3.6
IEEE Open Journal of Antennas and Propagation Pub Date : 2025-04-18 DOI: 10.1109/OJAP.2025.3562228
Yunhao Fu;King Yuk Chan;Rodica Ramer
{"title":"Investigation of Orthogonal Modes in a Periodic Structure and Application to Two-Separate Beams Steering Within the Same Frequency Band","authors":"Yunhao Fu;King Yuk Chan;Rodica Ramer","doi":"10.1109/OJAP.2025.3562228","DOIUrl":"https://doi.org/10.1109/OJAP.2025.3562228","url":null,"abstract":"This paper investigates orthogonal modes and their space harmonics in a dielectric-filled rectangular waveguide (RWG) leaky-wave structure. The dispersion analysis on orthogonal modes in periodic structures aims to determine the feasibility of two individual beams steering in different spatial regions. The Brillouin diagrams explain the basic principles of the constructed leaky-wave structure; a feeding network is developed for mode excitation. The proposed two-port prototype utilizes standard printed circuit board (PCB) and 3D printing techniques, and the dispersion properties reveal an agreement between measurements and simulations. From 19.6 to 22.2 GHz, the measurements showcase two separate beams steered for each port excitation. One excited port steers a beam in the forward quadrant, from +35° to +65°, while the other port excitation results in the second beam steered in the backward quadrant, from −66° to −35°. Since these two beams are produced by orthogonal modes that are independently excited from different ports, the measured in-band isolation of −20 dB between two input ports confirms that the two beams can be separately driven within the same frequency band. In addition, the two beams maintain linear polarization consistency in different spatial quadrants while scanning with frequency.","PeriodicalId":34267,"journal":{"name":"IEEE Open Journal of Antennas and Propagation","volume":"6 4","pages":"1096-1111"},"PeriodicalIF":3.6,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10970078","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144831720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Millimeter-Wave Antenna Array With Tunable Element Coupling for Enhanced Scan Capabilities 具有可调谐元件耦合的毫米波天线阵列增强扫描能力
IF 3.6
IEEE Open Journal of Antennas and Propagation Pub Date : 2025-04-16 DOI: 10.1109/OJAP.2025.3561450
Maximilian Döring;Thomas Frey;Dominik Schwarz;Felix Matt;Christian Waldschmidt;Tobias Chaloun
{"title":"A Millimeter-Wave Antenna Array With Tunable Element Coupling for Enhanced Scan Capabilities","authors":"Maximilian Döring;Thomas Frey;Dominik Schwarz;Felix Matt;Christian Waldschmidt;Tobias Chaloun","doi":"10.1109/OJAP.2025.3561450","DOIUrl":"https://doi.org/10.1109/OJAP.2025.3561450","url":null,"abstract":"Phased array systems have become an integral part of many communication and sensor applications. Despite advancements in suppressing scan blindness, existing methods lack adaptive features to enhance radiation efficiency for specific frequency-angle pairs. In this article, a dual-polarized stacked patch antenna with a novel electronically tunable coupling circuit is introduced, enabling adaptive control of the coupling mechanism between adjacent unit cells. An infinity array simulation demonstrates the advantages of integrating varactor diodes into the coupling circuit, enhancing the radiation efficiency for discrete frequency-angle pairs. Furthermore, additional degree of design freedom is achieved through the adaptive control of the coupling mechanism of adjacent unit cells. An <inline-formula> <tex-math>$11times 11$ </tex-math></inline-formula> demonstrator antenna is realized to validate the full-wave simulation results. The measurement results are in good agreement with the simulations. Through far-field measurements the impact of the electronically tunable coupling circuit is demonstrated, enhancing the scan efficiency at frequencies of 27.5 GHz and 31.5 GHz. For both principal planes at 27.5 GHz, a measured gain improvement of at least 2 dB is achieved, while in the E-plane at 31.5 GHz, the onset of a scan degradation within the range of <inline-formula> <tex-math>$pm {mathrm {60~ {^{circ}}}}$ </tex-math></inline-formula> can be mitigated.","PeriodicalId":34267,"journal":{"name":"IEEE Open Journal of Antennas and Propagation","volume":"6 4","pages":"1071-1083"},"PeriodicalIF":3.6,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10966438","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144831677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信