{"title":"IEEE Open Journal of Antennas and Propagation Instructions for authors","authors":"","doi":"10.1109/OJAP.2025.3556363","DOIUrl":"https://doi.org/10.1109/OJAP.2025.3556363","url":null,"abstract":"","PeriodicalId":34267,"journal":{"name":"IEEE Open Journal of Antennas and Propagation","volume":"6 3","pages":"C3-C3"},"PeriodicalIF":3.5,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11017458","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144170910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Guest Editorial UAV-Based Antenna and Field Measurements","authors":"Giuseppe virone","doi":"10.1109/OJAP.2025.3570412","DOIUrl":"https://doi.org/10.1109/OJAP.2025.3570412","url":null,"abstract":"","PeriodicalId":34267,"journal":{"name":"IEEE Open Journal of Antennas and Propagation","volume":"6 3","pages":"913-914"},"PeriodicalIF":3.5,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11017459","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144170911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"IEEE ANTENNAS AND PROPAGATION SOCIETY","authors":"","doi":"10.1109/OJAP.2025.3556359","DOIUrl":"https://doi.org/10.1109/OJAP.2025.3556359","url":null,"abstract":"","PeriodicalId":34267,"journal":{"name":"IEEE Open Journal of Antennas and Propagation","volume":"6 3","pages":"C2-C2"},"PeriodicalIF":3.5,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11017395","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144170920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"IEEE Open Journal of Antennas and Propagation Instructions for authors","authors":"","doi":"10.1109/OJAP.2025.3547180","DOIUrl":"https://doi.org/10.1109/OJAP.2025.3547180","url":null,"abstract":"","PeriodicalId":34267,"journal":{"name":"IEEE Open Journal of Antennas and Propagation","volume":"6 2","pages":"C3-C3"},"PeriodicalIF":3.5,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10938739","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143706560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"IEEE ANTENNAS AND PROPAGATION SOCIETY","authors":"","doi":"10.1109/OJAP.2025.3547176","DOIUrl":"https://doi.org/10.1109/OJAP.2025.3547176","url":null,"abstract":"","PeriodicalId":34267,"journal":{"name":"IEEE Open Journal of Antennas and Propagation","volume":"6 2","pages":"C2-C2"},"PeriodicalIF":3.5,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10938734","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143698305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Novel Quad-Band Electrically Small Antenna With Low Q","authors":"Hanguang Liao;Atif Shamim","doi":"10.1109/OJAP.2025.3554722","DOIUrl":"https://doi.org/10.1109/OJAP.2025.3554722","url":null,"abstract":"Multi-band Electrically Small (ES) antennas are promising candidates for wireless sensing nodes and wearable devices, where multiple protocols are required along with a compact size. However, designing ES antennas for multi-band operation is challenging. While various methods for multi-band ES antenna designs have been explored, none have successfully achieved fully ES performance (ka < 1 for all bands) for a quad-band design, as the increasing number of bands often leads to significantly reduced or even vanished bandwidths. Herein, a novel method to design a quad-band fully ES antenna is presented. The proposed method is based on the even and odd modes of a split-ring antenna and uses radio frequency trap loading to achieve dual-band operation for each mode. The proposed antenna is ES for all bands. At each band, the radiating structure uses almost the whole available volume, so a good bandwidth is obtained for all four bands. The proposed antenna is fabricated, and the performance at each band is measured in a proper setup designed for multi-band ES antennas. The measured results validate the proposed method, with Q values only roughly 3–8 times Chu’s limit among four bands, which is considered good for ES antennas, especially given that the proposed antenna is cylindrical rather than spherical. As far as the authors know, the proposed antenna is the first quad-band fully ES antenna.","PeriodicalId":34267,"journal":{"name":"IEEE Open Journal of Antennas and Propagation","volume":"6 3","pages":"902-912"},"PeriodicalIF":3.5,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10938574","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144170890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Will Tyndall;Alex Reda;J. Richard Shaw;Kevin Bandura;Arnab Chakraborty;Mark Halpern;Maile Harris;Emily Kuhn;Joshua Maceachern;Juan Mena-Parra;Laura B. Newburgh;Anna Ordog;Tristan Pinsonneault-Marotte;Anna Rose Polish;Ben Saliwanchik;Pranav Sanghavi;Seth R. Siegel;Audrey Whitmer;Dallas Wulf
{"title":"Beam Maps of the Canadian Hydrogen Intensity Mapping Experiment (CHIME) Measured With a Drone","authors":"Will Tyndall;Alex Reda;J. Richard Shaw;Kevin Bandura;Arnab Chakraborty;Mark Halpern;Maile Harris;Emily Kuhn;Joshua Maceachern;Juan Mena-Parra;Laura B. Newburgh;Anna Ordog;Tristan Pinsonneault-Marotte;Anna Rose Polish;Ben Saliwanchik;Pranav Sanghavi;Seth R. Siegel;Audrey Whitmer;Dallas Wulf","doi":"10.1109/OJAP.2025.3554457","DOIUrl":"https://doi.org/10.1109/OJAP.2025.3554457","url":null,"abstract":"We present beam measurements of the CHIME telescope using a radio calibration source deployed on a drone payload. During test flights, the pulsing calibration source and the telescope were synchronized to GPS time, enabling in-situ background subtraction for the full <inline-formula> <tex-math>$N^{2}$ </tex-math></inline-formula> visibility matrix for one CHIME cylindrical reflector. We use the autocorrelation products to estimate the primary beam width and centroid location, and compare these quantities to solar transit measurements and holographic measurements where they overlap on the sky. We find that the drone, solar, and holography data have similar beam parameter evolution across frequency and both spatial coordinates. This paper presents the first drone-based beam measurement of a large cylindrical radio interferometer. Furthermore, the unique analysis and instrumentation described in this paper lays the foundation for near-field measurements of experiments like CHIME.","PeriodicalId":34267,"journal":{"name":"IEEE Open Journal of Antennas and Propagation","volume":"6 3","pages":"928-940"},"PeriodicalIF":3.5,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10938182","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144170918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Active Retrodirective Rotman Lens Antenna for Wide-Angle RCS Enhancement","authors":"Hanieh Kiani Amiri;Michal Okoniewski","doi":"10.1109/OJAP.2025.3554043","DOIUrl":"https://doi.org/10.1109/OJAP.2025.3554043","url":null,"abstract":"This paper presents measurement results and analysis of an innovative active retrodirective Rotman lens antenna architecture, designed to enhance the radar cross-section (RCS) for backscattering applications. Unlike conventional passive retrodirective systems, our design integrates custom-designed reflection amplifiers to significantly boost backscattered signal gain while maintaining low DC power consumption. A novel biasing technique enables independent phase and gain control of the amplifiers, ensuring a uniform array response and reducing DC power consumption by approximately 30%. Experimental monostatic RCS measurements at 5.15 GHz with a linearly polarized incident wave demonstrate a uniform RCS response over a ±40° scan angle. The integration of reflection amplifiers enhances backscattering, allowing the lens to maintain a consistent −0.5 dB RCS across the entire scan angle, which is 9 dB higher than the average RCS of a metal plate with the same effective aperture. The compact design (approximately <inline-formula> <tex-math>$6lambda times 6lambda $ </tex-math></inline-formula>) and ultra-low power consumption (approximately 0.19 mW) make this system well-suited for low-power radar applications, such as mm-wave automotive radar sensors. These results confirm the feasibility of active-loaded phase conjugating systems for high-performance backscattering applications.","PeriodicalId":34267,"journal":{"name":"IEEE Open Journal of Antennas and Propagation","volume":"6 3","pages":"894-901"},"PeriodicalIF":3.5,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10937983","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144170912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rais Ahmad Sheikh;Azremi Abdullah Al-Hadi;Thennarasan Sabapathy;Roy B. V. B. Simorangkir;Rizwan Khan;Prayoot Akkaraekthalin;Che Muhammad Nor Che Isa;Surentiran Padmanathan;Toufiq Md Hossain;Ping Jack Soh
{"title":"A Triband Wearable Antenna for Location Tracking Using Cospas-Sarsat and GNSS","authors":"Rais Ahmad Sheikh;Azremi Abdullah Al-Hadi;Thennarasan Sabapathy;Roy B. V. B. Simorangkir;Rizwan Khan;Prayoot Akkaraekthalin;Che Muhammad Nor Che Isa;Surentiran Padmanathan;Toufiq Md Hossain;Ping Jack Soh","doi":"10.1109/OJAP.2025.3553440","DOIUrl":"https://doi.org/10.1109/OJAP.2025.3553440","url":null,"abstract":"This paper presents the design of a tri-band antenna operating in the Cospas-Sarsat (C-S) and GPS/GNSS bands applicable for the Internet of Things (IoT). Implemented with flexible and robust materials, the antenna operates in three distinct frequencies: 406 MHz for C-S applications and 1227 MHz (L2) and 1575 MHz (L1) for GPS/GNSS applications. The measured 10-dB impedance bandwidth is from 1.517-1.587 MHz (in L1 band) and from 1.192-1.232 MHz (in L2 band). In C-S band, the measured 6-dB bandwidth is from 393 to 406.5 MHz. The 3 dB axial ratio (AR) bandwidth in the L1 and L2 bands are 17 MHz (1.08%) and 18 MHz (1.47%), respectively. The antenna demonstrates a measured gain of 1.61 dB at 406 MHz, exceeding the simulated gain of 0.573 dB, and features a beamwidth of 140°. The measured gains for the L2 and L1 bands closely align with the simulations, although a slight reduction in gain is observed for the L2 band. In the H-plane, zenith-directed main lobes produce measured gains of 1.61 dB for 406 MHz, 2.71 dB for L2, and 3.51 dB for L1. On the other hand, the measured efficiency for the antenna is 36.32% (in the C-S band), 54% (in L1 band) and 60.12% (in L2 band). Both measured and simulated results consistently showed good agreements in terms of gain, polarization, and efficiency. Moreover, the antenna design incorporates effective shielding against electromagnetic radiation, conforming to specific absorption rate (SAR) values of 0.046, 0.077, and 0.035 W/Kg in C-S, L1 and L2 bands respectively. Antenna integration into the life vest foam prior to placement on the human chest significantly influenced axial ratio variations. In the L1 band, the AR increased from 0.43 dB to 3.34 dB, while in the L2 band, it rose from 0.56 dB to 8.66 dB. This indicates a more pronounced effect on polarization characteristics at the lower frequency. Overall, the proposed tri-band antenna presents promising capabilities for location tracking applications, with potential for integration into wearable devices for enhanced safety and tracking functionalities.","PeriodicalId":34267,"journal":{"name":"IEEE Open Journal of Antennas and Propagation","volume":"6 3","pages":"879-893"},"PeriodicalIF":3.5,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10935660","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144170916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Distributed Phased-Array Radars Exploiting Collaborative Beamforming and Diversity Techniques for Remote Sensing Applications","authors":"Sandra Costanzo;Giovanni Buonanno","doi":"10.1109/OJAP.2025.3552517","DOIUrl":"https://doi.org/10.1109/OJAP.2025.3552517","url":null,"abstract":"The analysis of phased-arrays exploiting the paradigm of collaborative beamforming together with excitation and position diversity is illustrated in this work. Excitation diversity is based on a thinned arrays framework, while position diversity is implemented in terms of binned arrays paradigm. The proposed approach can fall under collaborative beamforming related to wireless sensor networks. After introducing the description of the above arrays and the related mathematical model, stochastic analysis is carried out to highlight the main characteristics, by modeling the excitation coefficients and the element positions in terms of random variables. In particular, adequately exploiting the diversity framework, it is shown the possibility to flexibly control the pattern behaviour. The proposed analysis can be useful to characterize the performance of distributed phased-array radars exploiting collaborative beamforming and diversity techniques in drone applications for remote sensing.","PeriodicalId":34267,"journal":{"name":"IEEE Open Journal of Antennas and Propagation","volume":"6 3","pages":"864-878"},"PeriodicalIF":3.5,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10930880","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144170913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}