Fuwei Wang;Xuechen Zhang;Rong Sun;Bokai Ding;Ke Li;Chen He
{"title":"A Multibeam Solar Grid Antenna Integrated With Monocrystalline Silicon Solar Cell","authors":"Fuwei Wang;Xuechen Zhang;Rong Sun;Bokai Ding;Ke Li;Chen He","doi":"10.1109/OJAP.2024.3510304","DOIUrl":"https://doi.org/10.1109/OJAP.2024.3510304","url":null,"abstract":"This paper proposes a multibeam grid antenna integrated with a monocrystalline silicon solar panel first time, which consists of a grid antenna in microstrip form and a monocrystalline silicon solar cell. Multiple feeders are set at different positions of the grid antenna to adjust the current phase on the short side of the grid antenna to achieve beam scanning. The antenna is designed to operate in the 24 GHz radar band and can be installed in field Internet of Things devices for vehicle monitoring and communication, meeting requirements for communication rate, sensing sensitivity, detection, and interconnectivity. The multibeam characteristic can effectively enhance the communication and sensing detection range of the antenna. Meanwhile, the grid-like structure of the antenna ensures good optical transmission, allowing it to be positioned above the solar panel without significantly affecting the performance of the solar cell. The measurement results show that the multibeam solar grid antenna can cover the 24 GHz radar band and achieve beam deflection in four azimuth planes with a gain range of 15.2 to 16.6 dBi at the center frequency of 24.125 GHz. And the solar panel can supply a voltage of 0.56 V. The proposed antenna can realize the power supply and wide-range communication and detection for Internet of Things systems, which has great potential for application.","PeriodicalId":34267,"journal":{"name":"IEEE Open Journal of Antennas and Propagation","volume":"6 1","pages":"304-310"},"PeriodicalIF":3.5,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10772573","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143106976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Design and Characterization of Line-Waves Waveguides for Microwave Applications","authors":"Alessio Monti;Stefano Vellucci;Mirko Barbuto;Valentina Verri;Francesco Vernì;Claudio Massagrande;Davide Ramaccia;Michela Longhi;Zahra Hamzavi-Zarghani;Luca Stefanini;Alessandro Toscano;Filiberto Bilotti","doi":"10.1109/OJAP.2024.3506876","DOIUrl":"https://doi.org/10.1109/OJAP.2024.3506876","url":null,"abstract":"Line-waves are one-dimensional modes propagating at the interface between two planar complementary surfaces, characterized by tight transversal confinement of the field. Despite their unique guiding properties, their use in real microwave devices is still in the early stages, lacking a comprehensive design procedure and comparative analysis with conventional guiding structures. To fill this gap, here we report a simple and straightforward workflow for designing waveguides supporting 1D modes propagation. The design is based on the analytical relations existing between the surface impedance of the propagating modes and the sheet impedance of the metasurfaces, which allow quick retrieval of the geometrical parameters of the complementary metasurfaces sustaining the line-wave propagation. This approach is used to design several waveguiding layouts and compare their transmission performance through full-wave simulations accounting for dielectric and ohmic losses. Finally, experimental results for some selected designs in the microwave regime are provided, and a thoughtful comparison between a line-wave waveguide and an equivalent microstrip transmission line is carried out to assess the suitability of these devices for efficient high-frequency waveguiding.","PeriodicalId":34267,"journal":{"name":"IEEE Open Journal of Antennas and Propagation","volume":"6 1","pages":"293-303"},"PeriodicalIF":3.5,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10767771","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143106975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"IEEE ANTENNAS AND PROPAGATION SOCIETY","authors":"","doi":"10.1109/OJAP.2024.3475151","DOIUrl":"https://doi.org/10.1109/OJAP.2024.3475151","url":null,"abstract":"","PeriodicalId":34267,"journal":{"name":"IEEE Open Journal of Antennas and Propagation","volume":"5 6","pages":"C2-C2"},"PeriodicalIF":3.5,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10762832","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142679400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"IEEE Open Journal of Antennas and Propagation Instructions for authors","authors":"","doi":"10.1109/OJAP.2024.3475155","DOIUrl":"https://doi.org/10.1109/OJAP.2024.3475155","url":null,"abstract":"","PeriodicalId":34267,"journal":{"name":"IEEE Open Journal of Antennas and Propagation","volume":"5 6","pages":"C3-C3"},"PeriodicalIF":3.5,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10762801","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142691686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Guest Editorial Introduction to the Special Section on Women’s Research in Antennas and Propagation Section (WRAPS)","authors":"Sima Noghanian;Lei Guo;Irene S. Karanasiou","doi":"10.1109/OJAP.2024.3492612","DOIUrl":"https://doi.org/10.1109/OJAP.2024.3492612","url":null,"abstract":"","PeriodicalId":34267,"journal":{"name":"IEEE Open Journal of Antennas and Propagation","volume":"5 6","pages":"1427-1431"},"PeriodicalIF":3.5,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10762830","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142679372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Compact Uplink Circularly Polarized 2.4GHz Short Backfire Antenna for Geostationary Amateur Radio Satellite Es’Hail-2 (QO-100)","authors":"Michal Cerveny;Pavel Hazdra","doi":"10.1109/OJAP.2024.3496848","DOIUrl":"https://doi.org/10.1109/OJAP.2024.3496848","url":null,"abstract":"This paper describes a compact circularly polarized antenna designed for the 2.4GHz band with a gain of 15dBic designed for communication (uplink) with a geostationary amateur radio satellite Es’Hail-2 (QO-100). The proposed antenna upgrades a standard short backfire antenna (SBA) by utilizing two metasurfaces with the first acting as a high-impedance surface (HIS) allowing for a reduction of the distance between the sub-reflector and main reflector and the second enhancing the sub-reflector while functioning both as a tunable polarization divider and phase shifter to form the circular polarization. This novel concept enables the use of a simple, linearly polarized patch antenna as a feeder with no complex feeding networks. The proposed antenna was simulated, manufactured, measured and tested with the QO-100 transponder located on the Es’Hail-2 geostationary satellite. This antenna is suitable for situations where compactness, portability, a rigid construction, and a simple change of direction of the circular polarization are required.","PeriodicalId":34267,"journal":{"name":"IEEE Open Journal of Antennas and Propagation","volume":"6 1","pages":"274-282"},"PeriodicalIF":3.5,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10753477","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143106978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yunfei Qiang;Xiaochuan Fang;Rui-Xin Wu;Qian Chen;Wei Wang
{"title":"Application of Aperiodic “Einstein” Monotile in Phased Arrays With Limited Beam Scanning Range","authors":"Yunfei Qiang;Xiaochuan Fang;Rui-Xin Wu;Qian Chen;Wei Wang","doi":"10.1109/OJAP.2024.3499738","DOIUrl":"https://doi.org/10.1109/OJAP.2024.3499738","url":null,"abstract":"The discovery of the ‘Einstein’ monotile represents one of the most significant advancements in geometry in 2023, prompting research across multiple disciplines. This paper proposes a phased array with a limited beam scanning range based on the ‘Einstein’ monotile (Hat polykite), characterized by low grating lobe levels and high aperture efficiency. The proposed phased array reduces implementation complexity compared to periodic subarrays and enhances engineering practicality relative to other aperiodic tiles, particularly in load-bearing lattice configurations. Two examples of Hat polykite-based phased arrays are presented in this paper. Example A presents a sparse phased array, where each element is embedded within a Hat polykite, optimized for a maximum grating lobe level of −15 dB. Example B features a subarray comprising eight antenna elements based on the Hat polykite. This configuration achieves 90% aperture efficiency while keeping the maximum grating lobe level below −14 dB within an ±18° main beam scanning range.","PeriodicalId":34267,"journal":{"name":"IEEE Open Journal of Antennas and Propagation","volume":"6 1","pages":"283-292"},"PeriodicalIF":3.5,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10753505","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143106981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ulan Myrzakhan;Farhan A. Ghaffar;Mohammad Vaseem;Atif Shamim
{"title":"Additively-Manufactured, Magnetically Controlled, Frequency and Polarization Reconfigurable Phased Array Antenna","authors":"Ulan Myrzakhan;Farhan A. Ghaffar;Mohammad Vaseem;Atif Shamim","doi":"10.1109/OJAP.2024.3496296","DOIUrl":"https://doi.org/10.1109/OJAP.2024.3496296","url":null,"abstract":"An additively manufactured phased array antenna is presented in this work that provides simultaneous reconfiguration in frequency, polarization, and beam direction solely in response to magnetic tuning of the underlying ferrite substrate. This design obviates the need for integrated active components, which have been fundamental elements enabling tuning operation in traditional reconfigurable array antennas. The array element of the proposed array antenna consists of a waveguide-based phase shifter, realized by printing metallic walls on a ferrite substrate, which is then monolithically integrated with a printed circular patch antenna. Depending on the magnitude and polarity of the applied magnetic field (solenoids) to the patches, the array antenna can operate in a linearly polarized (LP) mode at 7.2 GHz or in dual circularly polarized (CP) modes in two continuously tunable frequency bands, 5.9–6.5 GHz and 7.6–7.95 GHz. Simultaneously, when magnetic field is applied to the phase shifters, continuous beam steering within ±25° of the boresight can be realized (±35° when fully saturating the ferrite at the phase shifters). To the best of the authors’ knowledge, this is the first implementation of an additively manufactured and fully magnetically controlled array antenna of this versatility.","PeriodicalId":34267,"journal":{"name":"IEEE Open Journal of Antennas and Propagation","volume":"6 1","pages":"264-273"},"PeriodicalIF":3.5,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10750280","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143106985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Balancing the Potential Gauging Process Applied to Wave Propagation for Arbitrary Space-Times","authors":"Thomas Reum","doi":"10.1109/OJAP.2024.3492317","DOIUrl":"https://doi.org/10.1109/OJAP.2024.3492317","url":null,"abstract":"This article addresses possibilities to compensate an unwanted side effect arising in the widely used gauging process of electrodynamic potentials due to mathematical conditions applied to describe propagating electromagnetic (EM) waves with a focus on radio frequency (RF). Previous studies have shown by means of guided propagation that phase velocities which differ from intuitive understanding occur for several components of potentials when deviating from a specific gauge determined by physical relationships. Two solution strategies are provided in a way that the changed temporal behavior of affected potentials is balanced directly or by adapted spatial relations. In this regard, appropriate changes of the metric are suitable since the choice of gauge is closely related to the space-time of a model. For this purpose, only the metric tensor of affected potential components is modified throughout this work. In contrast, that of all other EM quantities is entirely unchanged. Special relativity including a practical waveguide example in RF engineering as well as general relativity are involved to cover an extensive class of uses valid for an arbitrary choice of space-time, which assures in addition broad applicability to further physical disciplines.","PeriodicalId":34267,"journal":{"name":"IEEE Open Journal of Antennas and Propagation","volume":"6 1","pages":"252-263"},"PeriodicalIF":3.5,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10745281","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143106977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Indoor Deterministic Simulations and Statistical Modeling at Sub-THz Frequencies for Future Wireless Networks","authors":"Nektarios Moraitis;Konstantina S. Nikita","doi":"10.1109/OJAP.2024.3491421","DOIUrl":"https://doi.org/10.1109/OJAP.2024.3491421","url":null,"abstract":"Next generation wireless networks will necessitate new and wide spectrum swaths able to accommodate and support Tb/s applications and services. In this regard, frequencies above 100 GHz are anticipated to be allocated, which requires a thorough analysis of the propagation characteristics at those segments. This article presents a detailed analysis of the indoor channel at sub-THz frequencies, modeling its temporal and spatial characteristics for line-of-sight (LOS) and non-line-of-sight (NLOS) conditions, relying on extensive deterministic simulations. According to the results, frequency selective characteristics are revealed. The obtained root-mean-square delay spread is in the range of 4.4–10.3 ns for LOS, and 6.9–18.8 ns for NLOS scenarios, respectively. A high spatial degree of freedom is also observed based on the increased azimuth spreads with a mean value of 57.4° for LOS, and 88.1° for NLOS locations, which is associated with the environment geometry. All the large-scale features of the channel exhibit a linear variation with distance, whereas according to the Gini Index and K-factor analysis, a channel with limited sparsity is encountered, especially in NLOS scenarios. Furthermore, the spatial coherence of the channels’ attributes is also assessed and modeled using an exponential decaying sinusoid relationship. A faster channel decoherence is observed in NLOS locations. Finally, the temporal and spatial properties of the channel are modeled statistically, delivering its related features that include the ray and cluster decaying rates, the inter-arrival delays, the azimuth and elevation angle-of-arrivals, and the cluster and ray occurrence.","PeriodicalId":34267,"journal":{"name":"IEEE Open Journal of Antennas and Propagation","volume":"6 1","pages":"235-251"},"PeriodicalIF":3.5,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10742934","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143107121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}