GIANT最新文献

筛选
英文 中文
Room temperature stable twist-bend nematic materials without crystallization over 1 year 室温下稳定扭弯向列材料 1 年不结晶
IF 7 1区 化学
GIANT Pub Date : 2024-05-22 DOI: 10.1016/j.giant.2024.100290
Conglong Yuan , Yuxing Zhan , Huixian Liu , Zhaoyi Wang , Ning Shen , Binghui Liu , Honglong Hu , Zhigang Zheng
{"title":"Room temperature stable twist-bend nematic materials without crystallization over 1 year","authors":"Conglong Yuan ,&nbsp;Yuxing Zhan ,&nbsp;Huixian Liu ,&nbsp;Zhaoyi Wang ,&nbsp;Ning Shen ,&nbsp;Binghui Liu ,&nbsp;Honglong Hu ,&nbsp;Zhigang Zheng","doi":"10.1016/j.giant.2024.100290","DOIUrl":"10.1016/j.giant.2024.100290","url":null,"abstract":"<div><p>The twist-bend nematic (N<sub>TB</sub>) phase of achiral liquid crystals (LCs) manifests a unique self-assembled heliconical structure with nanometer-scale pitch length, mirroring the chiral symmetry-breaking phenomena in nature, thus sparking widespread research interest. However, the ingenious N<sub>TB</sub> phase is only stable at high temperatures within a very limited temperature interval, often undergoing inevitable crystallization at low temperatures. Herein, room temperature supercooled N<sub>TB</sub> material systems composed of meticulously designed LC dimer mixtures with varying molecular curvatures and central flexibility were developed, resulting in complete resistance to crystallization even after 1 year of storage. Furthermore, the proposed N<sub>TB</sub> material systems demonstrated exceptional compatibility with common nematic LCs, facilitating the tailoring of overall physical parameters, particularly to achieve a sufficiently low bend elastic constant with excellent stability. This work represents a paradigmatic advancement forward in realizing stable N<sub>TB</sub> phase materials with a broad temperature range and resistance to crystallization, thereby tackling the enduring and seemingly insurmountable challenge while providing impetus for further exploration of their applications in soft matter, crystallography, and advanced photonics.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":"19 ","pages":"Article 100290"},"PeriodicalIF":7.0,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666542524000547/pdfft?md5=ffedc8eea5fda2ed3e0b8c09e2c5379d&pid=1-s2.0-S2666542524000547-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141141847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anti-impact composite based on shear stiffening gel: Structural design and multifunctional applications 基于剪切加固凝胶的抗冲击复合材料:结构设计与多功能应用
IF 7 1区 化学
GIANT Pub Date : 2024-05-17 DOI: 10.1016/j.giant.2024.100285
Yue Yao , Ziyang Fan , Min Sang , Xinglong Gong , Shouhu Xuan
{"title":"Anti-impact composite based on shear stiffening gel: Structural design and multifunctional applications","authors":"Yue Yao ,&nbsp;Ziyang Fan ,&nbsp;Min Sang ,&nbsp;Xinglong Gong ,&nbsp;Shouhu Xuan","doi":"10.1016/j.giant.2024.100285","DOIUrl":"10.1016/j.giant.2024.100285","url":null,"abstract":"<div><p>With the development of intelligent protective wearable equipment, flexible materials with impact resistance have become a focus of attention. Shear stiffening gel (SSG) is a flexible smart material that can perceive external force loads and generate mechanical responses, boasting exceptional properties like fast response, adaptability, and self-healing. Since the SSG can absorb a large amount of energy during dynamic impact, it shows remarkable advantages for safety protection applications. During the past decade, there has been strong interests in the research community on the SSG composites and their various applications in cutting-edge fields. In this review, we summarize the recent research achievements of SSG composite, by focusing on the improved properties, enhanced functions, and manifold structures. Meanwhile, we also discuss the practical applications of SSG composite in battery protection, vibration control, intelligent sensing, wearable safety protection, and triboelectric nanogenerator (TENG). Finally, we propose the prospects and challenges for the further development and application of SSG composite in the future.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":"18 ","pages":"Article 100285"},"PeriodicalIF":7.0,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266654252400050X/pdfft?md5=fd2934bcc863b132269ef4bbe949995a&pid=1-s2.0-S266654252400050X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141024561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biodegradation of microbial plastic poly(3-hydroxybutyrate) in soil ecosystems at different latitudes 不同纬度土壤生态系统中微生物塑料聚(3-羟基丁酸)的生物降解
IF 7 1区 化学
GIANT Pub Date : 2024-05-16 DOI: 10.1016/j.giant.2024.100288
Svetlana V. Prudnikova , Evgeniy G. Kiselev , Aleksey V. Demidenko , Ivan V. Nemtsev , Ekaterina I. Shishatskaya , Sabu Thomas , Tatiana G. Volova
{"title":"Biodegradation of microbial plastic poly(3-hydroxybutyrate) in soil ecosystems at different latitudes","authors":"Svetlana V. Prudnikova ,&nbsp;Evgeniy G. Kiselev ,&nbsp;Aleksey V. Demidenko ,&nbsp;Ivan V. Nemtsev ,&nbsp;Ekaterina I. Shishatskaya ,&nbsp;Sabu Thomas ,&nbsp;Tatiana G. Volova","doi":"10.1016/j.giant.2024.100288","DOIUrl":"10.1016/j.giant.2024.100288","url":null,"abstract":"<div><p>The features of the degradation of the \"green\" plastic poly(3-hydroxybutyrate) [P(3HB)] in the soil of various geographical regions were studied: in red ferralitic soil under tropical conditions (Kerala, India) and in chernozem soil under conditions of a sharply continental climate (Eastern Siberia, Russia). Significant differences in the chemical composition, temperature, and humidity of the studied soils were revealed. The number of bacteria and mycelial fungi in the Siberian chernozem was higher than in the red soil of India, from 2-3 to 10 or more times. The degradation of P(3HB) films in the chernozem occurred faster than in the red soil, which was drier, with a low content of humus and minerals, and fewer microorganisms than the chernozem. The half-life of polymer samples in Siberia and India was 64.8 and 126.4 days, respectively. During degradation, a decrease in the molecular weight and an increase in the degree of crystallinity of polymer samples were revealed, which indicates a more active biodegradation of the amorphous phase of the polymer by soil microorganisms. The primary degraders of the polymer have been isolated and identified, and it has been shown that the complexes of degrading bacteria and fungi in different types of soils did not have common species. Despite the presence of species with pronounced depolymerase activity, the rate of film degradation in red ferralitic soils was slowed down by unfavorable environmental conditions. The obtained results confirm the importance of studying the process of PHA degradation in natural conditions.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":"18 ","pages":"Article 100288"},"PeriodicalIF":7.0,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666542524000535/pdfft?md5=b27097e462068a2b444a7301b194028a&pid=1-s2.0-S2666542524000535-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141032945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanics of single-network hydrogels with network imperfection 具有网络缺陷的单网络水凝胶的力学特性
IF 7 1区 化学
GIANT Pub Date : 2024-05-14 DOI: 10.1016/j.giant.2024.100287
Zhi Sheng, Siqi Yan, Jie Ma, Jiabao Bai, Zihang Shen, Zheng Jia
{"title":"Mechanics of single-network hydrogels with network imperfection","authors":"Zhi Sheng,&nbsp;Siqi Yan,&nbsp;Jie Ma,&nbsp;Jiabao Bai,&nbsp;Zihang Shen,&nbsp;Zheng Jia","doi":"10.1016/j.giant.2024.100287","DOIUrl":"10.1016/j.giant.2024.100287","url":null,"abstract":"<div><p>Polymer network is a crucial component of hydrogels, and network imperfection is a prominent feature of polymer networks, significantly influencing the performance of hydrogels. Two essential features of network imperfection are unequal chain lengths and dangling chains, both of which have a significant impact on the mechanical properties of single-network (SN) hydrogels. However, a theoretical framework considering network imperfection in SN hydrogels is still lacking. Here, we propose a theoretical model for SN hydrogels with network imperfection to study the damage behavior during deformation, in which we adopt different chain length distributions to accurately depict the real physical characteristics of the polymer network and incorporate the normalized critical chain force for a more precise measurement of network damage. To verify our theory, we discuss the effects of model parameters on the stress-stretch responses of SN hydrogels and predict the results of uniaxial loading-unloading tests of SN hydrogels, which agree well with experimentally measured stress-stretch behaviors. Finally, we implement the constitutive model into ABAQUS as a user subroutine to study the inhomogeneous deformation of hydrogels.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":"18 ","pages":"Article 100287"},"PeriodicalIF":7.0,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666542524000523/pdfft?md5=c4db0e5572150588908c21a2b39cdba8&pid=1-s2.0-S2666542524000523-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141038218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of a Facile, Versatile and Scalable Fabrication Approach of Solid, Coated, and Dissolving Microneedle Devices for Transdermal Drug Delivery Applications 开发用于透皮给药的固体、涂层和溶解微针设备的简便、多功能和可扩展的制造方法
IF 7 1区 化学
GIANT Pub Date : 2024-05-11 DOI: 10.1016/j.giant.2024.100284
Mohammad Hassan Shahriari , Hossein Salmani , Mohammad Akrami , Zeinab Salehi
{"title":"Development of a Facile, Versatile and Scalable Fabrication Approach of Solid, Coated, and Dissolving Microneedle Devices for Transdermal Drug Delivery Applications","authors":"Mohammad Hassan Shahriari ,&nbsp;Hossein Salmani ,&nbsp;Mohammad Akrami ,&nbsp;Zeinab Salehi","doi":"10.1016/j.giant.2024.100284","DOIUrl":"10.1016/j.giant.2024.100284","url":null,"abstract":"<div><p>Nowadays, microneedles as novel transdermal delivery systems are interested in scientists for biomedical applications. This work aims to present a Cascade Microneedle Molding Technique (CMMT) for the reusable fabrication of polydimethylsiloxane (PDMS) molds to produce microneedle devices. To produce a positive master mold from epoxy resin, a negative PDMS mold was first fabricated. PDMS can be molded, and microneedles can be fabricated using this epoxy mold in a scalable and cost-effective manner. These molds were used to manufacture solid, coated, and dissolving microneedles, which were characterized comprehensively. Microneedle morphology and geometry were evaluated using Scanning Electron Microscopy (SEM). The mechanical integrity and ability to insert the microneedle device into the skin were assessed using compression strength analysis and force-displacement measurements. Drug penetration through animal skin was evaluated for Rhodamine B (RhB) loaded microneedles. The depth of needle insertion was also visualized using histological analysis while the spatial distribution of released cargo was determined by using confocal microscopy. Taken together, CMMT offers a simple, rapid, cost-effective, and scalable method for mass-producing microneedles with remarkable properties compared to direct 3D printing or laser ablation.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":"18 ","pages":"Article 100284"},"PeriodicalIF":7.0,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666542524000493/pdfft?md5=682bf337751df7fe84a301c0f28a8ff0&pid=1-s2.0-S2666542524000493-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141026740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tuning conditions for the amine-functionalization of carbonyls formed in biobased polyfurfuryl alcohol 生物基聚糠醇中形成的羰基胺功能化的调整条件。
IF 7 1区 化学
GIANT Pub Date : 2024-05-11 DOI: 10.1016/j.giant.2024.100283
Pierre Delliere, Nathanael Guigo
{"title":"Tuning conditions for the amine-functionalization of carbonyls formed in biobased polyfurfuryl alcohol","authors":"Pierre Delliere,&nbsp;Nathanael Guigo","doi":"10.1016/j.giant.2024.100283","DOIUrl":"10.1016/j.giant.2024.100283","url":null,"abstract":"<div><p>Biobased furan resins (furfuryl alcohol based) are functionalized by taking advantage of a side-reaction occurring during its polymerization. The furan ring-opening reactions yields carbonyls which can be functionalized by reaction with primary amines. Light is shed on unexplored parameters impacting the properties of PFA/Amine systems. First, PFA/Amines were prepared using PFA resins at conversion degree between 0.3 and 0.95. Overall, high conversion degrees (0.9 and above) are best suited to produce rigid materials. In addition, a precipitation process may be used to reach high <em>T<sub>g</sub></em> biobased materials (145 °C). Finally, the impact of the amines’ basicity on the properties of PFA/Amines was investigated. The results highlighted that PFAs at conversion degrees above 0.9 are little affected by the basicity. However, the properties of PFA functionalized at lower conversion degrees are strongly affected by the bases, i.e. high brittleness. This can be circumvented by limiting the functionalization degree to 0.25 and below.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":"18 ","pages":"Article 100283"},"PeriodicalIF":7.0,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666542524000481/pdfft?md5=a8a8b66fa774ebeb9360878a7b103f50&pid=1-s2.0-S2666542524000481-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141039829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanics manipulation in large-area organic solar modules achieving over 16.5 % efficiency 大面积有机太阳能电池组件中的机械操纵,实现超过 16.5% 的效率
IF 7 1区 化学
GIANT Pub Date : 2024-05-11 DOI: 10.1016/j.giant.2024.100286
Hao Gu , Juan Zhu , Haiyang Chen , Guang Zeng , Xining Chen , Xiaohua Tang , Jinfeng Xia , Tianjiao Zhang , Ben Zhang , Jiandong Zhang , Junyuan Ding , Yaowen Li , Yongfang Li
{"title":"Mechanics manipulation in large-area organic solar modules achieving over 16.5 % efficiency","authors":"Hao Gu ,&nbsp;Juan Zhu ,&nbsp;Haiyang Chen ,&nbsp;Guang Zeng ,&nbsp;Xining Chen ,&nbsp;Xiaohua Tang ,&nbsp;Jinfeng Xia ,&nbsp;Tianjiao Zhang ,&nbsp;Ben Zhang ,&nbsp;Jiandong Zhang ,&nbsp;Junyuan Ding ,&nbsp;Yaowen Li ,&nbsp;Yongfang Li","doi":"10.1016/j.giant.2024.100286","DOIUrl":"10.1016/j.giant.2024.100286","url":null,"abstract":"<div><p>High-efficiency organic solar cells (OSCs) are typically produced through spin-coating, restricting their application to small areas. Blade-coating, however, emerging as a promising method for large-scale production, yet faces challenges in film morphology optimization, which often leads to reduced power conversion efficiency (PCE). This study delves into the influence of both liquid and solid additives on the morphology of active layer in blade-coated OSCs, comparing them with spin-coated counterparts, using the high-efficiency PM6:D18:BTP-eC9 active layer. For the first time, we discovered the distinct impacts of solid versus liquid additives on the film uniformity, phase separation and crystalline regulation in blade-coating technique. Our findings reveal that liquid additives in blade-coating trigger outward Marangoni flow, causing undesirable material aggregation and phase separation, thereby impairing device performances. Conversely, switching to solid additives, like 1,4-Diiodobenzene (DIB), prevents these detrimental changes in fluid mechanics and preserves the desired additive effects. We demonstrate that solid additives can significantly change these inferior behaviors introduced by liquid additives in blade-coating, regulate phase separation, enhance π-π accumulation and delay crystallization, and ultimately boost OSC efficiency. Using DIB solid additive, we achieved a PCE of 18.81 % in blade-coated devices. Scaling up by 252 times, the PCE of large-area OSC module (15.64 cm²) sustained at 16.70 % (certified 16.66 %), ranking among the highest efficiency for OSC modules reported so far. These modules also exhibited exceptional storage stability, retaining 98 % efficiency after 5880 h in a nitrogen atmosphere. This research also provides a comprehensive understanding from various film characterizations and the perspective of fluid mechanics normally lack in the research. This research not only establishes a new framework for high-performance and large-area OSC modules but also extends its findings to other OSC systems with different additives, demonstrating a roll-to-roll compatible technique.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":"18 ","pages":"Article 100286"},"PeriodicalIF":7.0,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666542524000511/pdfft?md5=5ffc8847315fcfdd912fd013c32eede5&pid=1-s2.0-S2666542524000511-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141042793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Monofilaments of isosorbide-based tetrapolyesters with enhanced (bio)degradability prepared by a solid-state drawing process: Synthesis and struture-property relations 通过固态拉丝工艺制备的具有更强(生物)降解性的异山梨醇基四聚酯单丝:合成与结构-性能关系
IF 7 1区 化学
GIANT Pub Date : 2024-05-10 DOI: 10.1016/j.giant.2024.100281
Zhenguang Li , Yaning Wang , Jielin Xu , Jing Wu , Huaping Wang
{"title":"Monofilaments of isosorbide-based tetrapolyesters with enhanced (bio)degradability prepared by a solid-state drawing process: Synthesis and struture-property relations","authors":"Zhenguang Li ,&nbsp;Yaning Wang ,&nbsp;Jielin Xu ,&nbsp;Jing Wu ,&nbsp;Huaping Wang","doi":"10.1016/j.giant.2024.100281","DOIUrl":"10.1016/j.giant.2024.100281","url":null,"abstract":"<div><p>To enhance the degradation rate of poly (butylene adipate-co-terephthalate) (PBAT) in the natural environment and to investigate the effect of modified monomers on the molding and structure of copolyester fibers, a series of isosorbide modified PBAT (PBIAT) tetrapolyesters were synthesized and monofilaments were prepared by solid-state drawing in this work. The experimental results revealed that the introduction of isosorbide formed a partial block structure in the molecular chain, and that a significant improvement in the properties of heat resistance and degradability of the copolyester was observed with the introduction of isosorbide. In the research of fiber forming and structure-property relationship by isosorbide, it was found that although the monofilament orientation process was affected by the V-shape structure of isosorbide, the change of the crystal structure under stress was similar to that of polybutylene terephthalate (PBT). The PBIAT monofilaments showed a decrease in the strength at break affected by the introduction of isosorbide but they still met the requirements for textile applications.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":"18 ","pages":"Article 100281"},"PeriodicalIF":7.0,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666542524000468/pdfft?md5=a22f835d08b365a0b46cfa57bda31d6a&pid=1-s2.0-S2666542524000468-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141027778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Crystallization-driven tuneable lasing of perylene doped into the nematic liquid crystal 掺入向列液晶的珀烯的结晶驱动型可调激光
IF 7 1区 化学
GIANT Pub Date : 2024-05-09 DOI: 10.1016/j.giant.2024.100279
Alina Szukalska , Andrzej Zak , Ewa Chrzumnicka , Anna Gibas , Agnieszka Baszczuk , Jaroslaw Mysliwiec
{"title":"Crystallization-driven tuneable lasing of perylene doped into the nematic liquid crystal","authors":"Alina Szukalska ,&nbsp;Andrzej Zak ,&nbsp;Ewa Chrzumnicka ,&nbsp;Anna Gibas ,&nbsp;Agnieszka Baszczuk ,&nbsp;Jaroslaw Mysliwiec","doi":"10.1016/j.giant.2024.100279","DOIUrl":"10.1016/j.giant.2024.100279","url":null,"abstract":"<div><p>Versatile devices with tunable capabilities for controlling lasing wavelength and intensity are in high demand. Liquid crystals (LCs) exhibit immense potential for such applications, offering fine-tuning possibilities through external factors. On the other hand, laser technology is currently a research hotspot in optoelectronics, and also in practical applications. The recent market introduction of laser television marks a significant stride toward making such advanced technology accessible in every household. In synergy with laser pumping, the LCs unquestionably can be rediscovered. This study presents a comprehensive investigation into the crystallization phenomenon within a host-guest device, compact in size, free from moving parts, and integrating the liquid crystalline (LC) matrix doped with 3,4,9,10-tetra-(3-alcoxy-carbonyl)-perylene (THCP) dye. The focus lies in examining the influence of varying dye concentrations on multicolor fluorescence, lasing behavior, and device morphology. The systematic analysis of Random Lasing (RL) energy thresholds and the impact of DC voltage on light intensity modulation is demonstrated. Morphological changes were monitored in real-time using optical microscopy techniques, including crossed polarizer, and fluorescence imaging under 450 nm excitation. Utilizing advanced Transmission Electron Microscopy (TEM) techniques, we explore exceptional insights into our set of devices, providing novel information about the THCP crystallization process for the first time in the literature. To gain a comprehensive understanding of the crystal forming and molecular geometry we examined additionally the THCP dye, using X-ray diffraction and Raman spectroscopy. Furthermore, we showcase that varying the pumping energy enables multicolor tuning in the fabricated systems, presenting an attractive feature in the context of laser display technologies.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":"18 ","pages":"Article 100279"},"PeriodicalIF":7.0,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666542524000444/pdfft?md5=10076cddda6efb914dbfbd070347d2f1&pid=1-s2.0-S2666542524000444-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141050584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine learning assisted design and optimization of plate-lattice structures with superior specific recovery force 机器学习辅助设计和优化具有超强比恢复力的板格结构
IF 7 1区 化学
GIANT Pub Date : 2024-05-09 DOI: 10.1016/j.giant.2024.100282
Amir Teimouri, Adithya Challapalli, John Konlan, Guoqiang Li
{"title":"Machine learning assisted design and optimization of plate-lattice structures with superior specific recovery force","authors":"Amir Teimouri,&nbsp;Adithya Challapalli,&nbsp;John Konlan,&nbsp;Guoqiang Li","doi":"10.1016/j.giant.2024.100282","DOIUrl":"https://doi.org/10.1016/j.giant.2024.100282","url":null,"abstract":"<div><p>In load carrying structures and devices, there is a growing need for shape memory polymer (SMP) metamaterials that are lightweight and have superior strength, remarkable flexibility, and substantial specific recovery force (SFR). One of the challenges is to find optimum lightweight structures with high SFR. To address this challenge, we propose a novel inverse design framework to design plate-lattice structures (PLSs) with user-defined optimum specific maximum compression strength. Consisting of three sub-frameworks, the performance of the inverse design framework was validated before it was utilized to optimize PLSs. The optimum PLSs developed are fabricated with 3D printing using a novel SMP. In addition, we have printed a solid cylinder and Cubic+Octet (control) PLSs to compare their structural capacity with the predicted structures. The optimized PLSs display 30 ∼ 170 % greater SFR compared to the control PLS and solid cylinder. These findings suggest a promising strategy for enhancing the effectiveness of actuators based on SMP mechanical metamaterials. The inverse design framework has the potential to be utilized for generating structures with user-defined optimum mechanical properties.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":"18 ","pages":"Article 100282"},"PeriodicalIF":7.0,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266654252400047X/pdfft?md5=abed6cc29b2caca74b7d92990a8ad014&pid=1-s2.0-S266654252400047X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140950597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信