GIANT最新文献

筛选
英文 中文
Large-Size ultrathin mica nanosheets: Reinforcements of biobased PEF polyester 大尺寸超薄云母纳米片:生物基 PEF 聚酯的增强材料
IF 7 1区 化学
GIANT Pub Date : 2024-04-08 DOI: 10.1016/j.giant.2024.100264
Jiheng Ding , Hao Wang , Hongran Zhao , Shuo Shi , Jing Su , Qinchao Chu , Bin Fang , Mohammad Raza Miah , Jinggang Wang , Jin Zhu
{"title":"Large-Size ultrathin mica nanosheets: Reinforcements of biobased PEF polyester","authors":"Jiheng Ding ,&nbsp;Hao Wang ,&nbsp;Hongran Zhao ,&nbsp;Shuo Shi ,&nbsp;Jing Su ,&nbsp;Qinchao Chu ,&nbsp;Bin Fang ,&nbsp;Mohammad Raza Miah ,&nbsp;Jinggang Wang ,&nbsp;Jin Zhu","doi":"10.1016/j.giant.2024.100264","DOIUrl":"https://doi.org/10.1016/j.giant.2024.100264","url":null,"abstract":"<div><p>Due to the superior physical properties and high-level alignment of the nanoscale building blocks, assembly of high-quality two-dimensional (2D) nanosheets into macroscopic engineering structure materials can achieve many unexpected performance. Natural mica nanosheets (MNSs) are abundant and with superlative properties, showing huge prospect for engineering structural materials. However, the difficulty of the mass production with large size and high aspect ratio are the current factors that limit this. Inspired by the well-known scotch-tape exfoliation, herein we develop a gummy-tape exfoliation (GTE) method by using liquid oligomers as mediums in ball-milling process to massively produce large-size and ultrathin MNSs. As a confirmation, the obtained MNSs show a record high aspect ratio of ≈1320 and a large actual yield of ∼ 80 %. A transparent biobased aromatic polyester nanocomposite film made of such MNSs and polyethylene furandicarboxylate (PEF) matrix possesses remarkably improved mechanical, barrier properties, and UV-shielding performances at an extremely low filler loading (≤0.5 vol%), making it a novel potential engineering material for packing fields in foods, drugs, and electronic products, <em>etc</em>.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":"18 ","pages":"Article 100264"},"PeriodicalIF":7.0,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666542524000298/pdfft?md5=0d2ea6726427443b8254f807549a4bf3&pid=1-s2.0-S2666542524000298-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140548928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fluorine atom substituted aromatic polyimides: Unlocking extraordinary dielectric performance and comprehensive advantages 氟原子取代的芳香族聚酰亚胺:释放非凡的介电性能和综合优势
IF 7 1区 化学
GIANT Pub Date : 2024-04-04 DOI: 10.1016/j.giant.2024.100262
Weifeng Peng , Huanyu Lei , Bingyu Zou , Luhao Qiu , Yaohao Song , Xiang Huang , Fan Ye , Feng Bao , Mingjun Huang
{"title":"Fluorine atom substituted aromatic polyimides: Unlocking extraordinary dielectric performance and comprehensive advantages","authors":"Weifeng Peng ,&nbsp;Huanyu Lei ,&nbsp;Bingyu Zou ,&nbsp;Luhao Qiu ,&nbsp;Yaohao Song ,&nbsp;Xiang Huang ,&nbsp;Fan Ye ,&nbsp;Feng Bao ,&nbsp;Mingjun Huang","doi":"10.1016/j.giant.2024.100262","DOIUrl":"https://doi.org/10.1016/j.giant.2024.100262","url":null,"abstract":"<div><p>Low-dielectric polymers face prominent development challenges at high frequency. Particularly, the relationship between the high-frequency dielectric loss and polymer structures remains not clear enough. Besides, the strategies for achieving low dielectric loss usually have to scarify other important materials properties, e.g., heat resistance or dimensional stability. Herein, fluorine-containing aromatic polyimides were systematically investigated. Among them, simple fluorine atom (-F) substituted polyimides exhibit remarkable low dielectric loss at high frequency (10 GHz) as well as comprehensive advantages, including near-zero thermal expansion coefficient, extremely high thermal decomposition stability, high optical transmittance and excellent mechanical properties. The fundamental mechanisms of low dielectric loss are fully discussed. Benefiting from the unique electric effect and compact size of -F group, -F substituted polyimides display low dipolar density and strongly restricted dipolar motion, contributing to a reduced permanent dipolar polarization loss. Moreover, the concept of induced dipolar polarization was introduced to illustrate the nontrivial impact of F-substituted effect on conjugated electron cloud polarization loss in aromatic polymer system. This work not only provides valuable insights for understanding the mechanism of dielectric loss at high frequency for aromatic polymers, but also opens up broader application possibilities of polyimides in microelectronic and wireless communications industries.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":"18 ","pages":"Article 100262"},"PeriodicalIF":7.0,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666542524000274/pdfft?md5=f12fe99a2912ae3460cda2bd3c93df18&pid=1-s2.0-S2666542524000274-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140542799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review on PLA-based biodegradable materials for biomedical applications 基于聚乳酸的生物可降解材料在生物医学中的应用综述
IF 7 1区 化学
GIANT Pub Date : 2024-04-04 DOI: 10.1016/j.giant.2024.100261
Muzamil Hussain , Shahzad Maqsood Khan , Muhammad Shafiq , Naseem Abbas
{"title":"A review on PLA-based biodegradable materials for biomedical applications","authors":"Muzamil Hussain ,&nbsp;Shahzad Maqsood Khan ,&nbsp;Muhammad Shafiq ,&nbsp;Naseem Abbas","doi":"10.1016/j.giant.2024.100261","DOIUrl":"https://doi.org/10.1016/j.giant.2024.100261","url":null,"abstract":"<div><p>Polylactic Acid (PLA) is a biodegradable polymer gaining popularity as a replacement for conventional plastics in different industrial sectors. However, PLA has inherent limitations and requires modifications to enhance its performance. This review article covers the different important aspects related to the PLA such as the synthesis route of PLA, biodegradation mechanism of PLA, properties of PLA, and applications of PLA in different sectors. The main focus of this review is to identify the different innovative copolymers, blends and composites of PLA for biomedical applications. Most important characteristics such as degradation behavior, biocompatibility and mechanical properties of these PLA-based biodegradable polymers were briefly discussed. This review indicates that the optimization of processing techniques and suitable selection of additives play an important role to achieve the desired properties of PLA. This review also discusses the issues associated to PLA-based materials for biomedical applications.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":"18 ","pages":"Article 100261"},"PeriodicalIF":7.0,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666542524000262/pdfft?md5=1a4b84a6cf903c05f028b53799daf19c&pid=1-s2.0-S2666542524000262-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140551009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solvent-free conversion of CO2 in carbonates through a sustainable macroporous catalyst 通过可持续大孔催化剂实现碳酸盐中二氧化碳的无溶剂转化
IF 7 1区 化学
GIANT Pub Date : 2024-04-04 DOI: 10.1016/j.giant.2024.100258
Sandro Dattilo , Chiara Zagni , Tommaso Mecca , Vincenzo Patamia , Giuseppe Floresta , Pietro Nicotra , Sabrina C. Carroccio , Antonio Rescifina
{"title":"Solvent-free conversion of CO2 in carbonates through a sustainable macroporous catalyst","authors":"Sandro Dattilo ,&nbsp;Chiara Zagni ,&nbsp;Tommaso Mecca ,&nbsp;Vincenzo Patamia ,&nbsp;Giuseppe Floresta ,&nbsp;Pietro Nicotra ,&nbsp;Sabrina C. Carroccio ,&nbsp;Antonio Rescifina","doi":"10.1016/j.giant.2024.100258","DOIUrl":"https://doi.org/10.1016/j.giant.2024.100258","url":null,"abstract":"<div><p>The novelty of this work consists of synthesizing and exploiting a heterogeneous catalyst containing ammonium chloride as part of the polymeric sponge sites for CO<sub>2</sub> capture. To this aim, the polymerization of 2-acryloyl(oxyethyl)trimethylammonium chloride was performed in cryo-condition, in the presence of a crosslinking agent, obtaining a lightweight macroporous freestanding material. Its efficiency in converting aromatic and aliphatic epoxides to the corresponding carbonates was successfully proved by using proton Nuclear Magnetic Resonance (<sup>1</sup>H NMR). Remarkably, the conversion of styrene oxide (SO) to styrene carbonate (SC) reached a yield of 99 % after 24 h of reaction. The calculated yield versus the aliphatic cyclohexene oxide is 71 %. Similar results were obtained by substituting the resin counter anion with Br<sup>−</sup>, although the conversion kinetic was slower than the chloride. It is worth noticing that reactions took place in the mixture without adding the tetrabutylammonium bromide (TBAB), typically used as a co-catalyst to convert epoxides into carbonates. The recyclability of the as-prepared catalyst was evaluated for four reaction cycles, evidencing stable properties without significant depletion of CO<sub>2</sub> capture efficiency. Most importantly, the post-cleaning of the catalytic sponge is not required to be reused. Finally, the green chemistry metrics applied to the process demonstrated that our approach significantly mitigates risks and reduces environmental impact, thus elevating the overall cleanliness of our proof of concept.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":"18 ","pages":"Article 100258"},"PeriodicalIF":7.0,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666542524000237/pdfft?md5=30a42f121cc921ad375eece1b4b67236&pid=1-s2.0-S2666542524000237-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140545777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Self-regulated secretory materials for long-term icephobicity 自我调节分泌物促进长期恐冰症
IF 7 1区 化学
GIANT Pub Date : 2024-04-01 DOI: 10.1016/j.giant.2024.100260
Xinhong Xiong , Songzi Xu , Li Yang , Hong Wang , Guifeng Xia , Qiucheng Yang , Qian Wu , Jiaxi Cui
{"title":"Self-regulated secretory materials for long-term icephobicity","authors":"Xinhong Xiong ,&nbsp;Songzi Xu ,&nbsp;Li Yang ,&nbsp;Hong Wang ,&nbsp;Guifeng Xia ,&nbsp;Qiucheng Yang ,&nbsp;Qian Wu ,&nbsp;Jiaxi Cui","doi":"10.1016/j.giant.2024.100260","DOIUrl":"https://doi.org/10.1016/j.giant.2024.100260","url":null,"abstract":"<div><p>Passive icephobic coatings attract increasing attention due to their harmless strategy for preventing undesirable ice accumulation. Slippery liquid-infused surfaces display extremely low ice adhesion (τ<sub>ice</sub>) but are argued for their poor stabilities and longevities due to inevitable liquid consumption. Herein we reported a class of lubricated polysiloxane coatings that can maintain low τice (∼2.2 kPa) for a long time (&gt;800 icing/deicing cycle). The coatings have slippery lubricated surfaces and switchable porous matrices loading a large amount of liquid in isolated porevoids. Such droplet-embedded structure allows the surfaces to continuously maintain highly swelling states in a self-adaptive manner, i.e., only in the conditions icing or oil consumption occur dose oil is released, and thus show excellent long-term icephobicity. Besides, these materials exhibit good mechanical properties, antifatigue, and substrate adhesion. Because the coatings can be prepared via facile and green method from cheap starting materials, we foresee their broad application prospect in many fields.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":"18 ","pages":"Article 100260"},"PeriodicalIF":7.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666542524000250/pdfft?md5=4ae31894cafaa4b0ab94c482c01113ae&pid=1-s2.0-S2666542524000250-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140351175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reticular liquid crystal design: Controlling complex self-assembly of p-terphenyl rods by side-chain engineering and chirality 网状液晶设计:通过侧链工程和手性控制对三联苯棒的复杂自组装
IF 7 1区 化学
GIANT Pub Date : 2024-04-01 DOI: 10.1016/j.giant.2024.100254
Silvio Poppe , Anne Lehmann , Matthias Steimecke , Marko Prehm , Yangyang Zhao , Changlong Chen , Yu Cao , Feng Liu , Carsten Tschierske
{"title":"Reticular liquid crystal design: Controlling complex self-assembly of p-terphenyl rods by side-chain engineering and chirality","authors":"Silvio Poppe ,&nbsp;Anne Lehmann ,&nbsp;Matthias Steimecke ,&nbsp;Marko Prehm ,&nbsp;Yangyang Zhao ,&nbsp;Changlong Chen ,&nbsp;Yu Cao ,&nbsp;Feng Liu ,&nbsp;Carsten Tschierske","doi":"10.1016/j.giant.2024.100254","DOIUrl":"https://doi.org/10.1016/j.giant.2024.100254","url":null,"abstract":"<div><p>A series of K-shaped bolapolyphiles, consisting of a <em>p</em>-terphenyl core, two polar glycerol end-groups and a swallow-tailed alkyl side-chain were synthesized and investigated. By increasing the side-chain volume an astonishing variety of very different liquid crystalline (LC) phases was observed, ranging from a rectangular (Col<sub>rec</sub>/<em>c</em>2<em>mm</em>) and a square honeycomb (Col<sub>squ</sub>/<em>p</em>4<em>mm</em>) via a highly complex zeolite-like octagon/pentagon honeycomb filled with additional strings of rod-bundles (Col<sub>rec</sub><sup>Z</sup>/<em>c</em>2<em>mm</em>), a new 3D-hexagonal (<em>R</em><span><math><mover><mrow><mn>3</mn></mrow><mo>‾</mo></mover></math></span><em>c</em>) double network phase, a double and even a single network cubic phase (double gyroid Cub/<em>Ia</em><span><math><mover><mrow><mn>3</mn></mrow><mo>‾</mo></mover></math></span><em>d</em> and single diamond Cub/<em>Fd</em><span><math><mover><mrow><mn>3</mn></mrow><mo>‾</mo></mover></math></span><em>m</em>, respectively) to a correlated lamellar phase (Lam<sub>Sm</sub>/<em>c</em>2<em>mm</em>). Though these LC structures are highly complex and there is a delicate balance of steric and geometric frustration determining the phase formation, there is only a small effect of permanent molecular chirality in the glycerol groups ((<em>R,R</em>)-configuration) on them, which is attributed to a slightly different packing density of uniformly chiral and racemic glycerols, but not to an effect of induced helicity. Compared to related T-shaped bolapolyphiles with a single linear <em>n</em>-alkyl side-chain, which form exclusively honeycomb phases, the complexity of self-assembly is enhanced for the K-shaped compounds due to a competition between the requirements of space filling, chain stretching and geometric frustration, and affected by the shape of the polar glycerol domains at the junctions.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":"18 ","pages":"Article 100254"},"PeriodicalIF":7.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666542524000195/pdfft?md5=ac442a6a9533db3122bfd99fc86aa7cc&pid=1-s2.0-S2666542524000195-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140559146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emerging polymer ferroelectrics with liquid crystalline order 具有液晶阶的新兴聚合物铁电体
IF 7 1区 化学
GIANT Pub Date : 2024-03-31 DOI: 10.1016/j.giant.2024.100257
Jiahao Huang , Man-Hin Kwok , Bin Zhao , Lei Zhu
{"title":"Emerging polymer ferroelectrics with liquid crystalline order","authors":"Jiahao Huang ,&nbsp;Man-Hin Kwok ,&nbsp;Bin Zhao ,&nbsp;Lei Zhu","doi":"10.1016/j.giant.2024.100257","DOIUrl":"10.1016/j.giant.2024.100257","url":null,"abstract":"<div><p>For liquid crystals (LCs) and liquid crystalline polymers (LCPs), a chiral smectic C (SmC*) phase has been mandatory for breaking the symmetry and achieving ferroelectricity. However, this SmC* phase leads to rather low spontaneous polarization (<em>P</em><sub>s</sub>, 0.1–5 mC/m<sup>2</sup>), which has limited their usage in various electronic and electro-optical applications. In this mini-review, we highlight three new types of ferroelectric LCPs with high <em>P<sub>s</sub></em> values reported in the last decade. The first system refers to the ferroelectric nematic LCs and LCPs. The large dipole moment (&gt;9 Debye or D) and oblique molecular shape induce a polar packing of calamitic nematics. The <em>P<sub>s</sub></em> can reach as high as 40 mC/m<sup>2</sup>. The second example is a ferroelectric supramolecular LCP, in which the highly polar cyano groups in the core lead to a polar structure of the hexagonal columnar phase after electric poling. The <em>P<sub>s</sub></em> can reach ∼ 20 mC/m<sup>2</sup>. The third system utilizes highly dipolar sulfonyl groups (dipole moment ∼4.5 D) in the side chains of mesogen-free comb-shaped LCPs. By combining finely tuned dipolar interactions and mobile LC order, these mesogen-free comb-like LCPs have shown good potential for ferroelectricity with high <em>P<sub>s</sub></em>. These ferroelectric LCPs with high <em>P<sub>s</sub></em> will enable new electronic and electro-optical applications in the future.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":"18 ","pages":"Article 100257"},"PeriodicalIF":7.0,"publicationDate":"2024-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666542524000225/pdfft?md5=f893e876c0ee292018325f531a83476e&pid=1-s2.0-S2666542524000225-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140402314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced contrast imaging with polyamide 6/Fe(OH)3 nanofibrous scaffolds: A focus on high T1 relaxivity 使用聚酰胺 6/Fe(OH)3 纳米纤维支架增强对比成像:聚焦高 T1 弛豫性
IF 7 1区 化学
GIANT Pub Date : 2024-03-30 DOI: 10.1016/j.giant.2024.100259
Congyi Yang , Yifan Jia , Weiwen Yuan , Guoxing Liao , Qianqian Yu , Zhe Tang , Yuan Ji , Guanghui Liu , Fangrong Tan , Paul D. Topham , LinGe Wang
{"title":"Enhanced contrast imaging with polyamide 6/Fe(OH)3 nanofibrous scaffolds: A focus on high T1 relaxivity","authors":"Congyi Yang ,&nbsp;Yifan Jia ,&nbsp;Weiwen Yuan ,&nbsp;Guoxing Liao ,&nbsp;Qianqian Yu ,&nbsp;Zhe Tang ,&nbsp;Yuan Ji ,&nbsp;Guanghui Liu ,&nbsp;Fangrong Tan ,&nbsp;Paul D. Topham ,&nbsp;LinGe Wang","doi":"10.1016/j.giant.2024.100259","DOIUrl":"https://doi.org/10.1016/j.giant.2024.100259","url":null,"abstract":"<div><p>Nanofibers serve as widely employed tissue engineering scaffolds in diverse biomedical applications. When implanted <em>in vivo</em>, it is crucial for tissue engineering scaffolds to be visualizable, enabling the monitoring of their shape, position, and performance. This capability facilitates the effective assessment of implant deformations, displacements, degradations, and functionalities. However, in many biomedical imaging techniques such as magnetic resonance imaging (MRI), the contrast of tissue engineering scaffolds is often inadequate. MRI is particularly notable for its effectiveness in imaging soft tissues. Previous endeavors to enhance the contrast of tissue engineering scaffolds in MRI have involved the use of negative contrast agents (CAs). Nonetheless, negative CAs can result in artifacts, thus favoring the preference for positive CAs due to their ability to generate clearer boundaries. In this study, we successfully prepared composite polyamide 6 nanofibrous scaffolds with ultrafine dispersion Fe(OH)<sub>3</sub> nanoparticles using electrospinning and <em>in-situ</em> growth techniques. The relaxation properties of the magnetic nanofibrous scaffolds confirmed the successful production of scaffolds suitable for positive imaging. <em>In vitro</em> cell seeding experiments demonstrated the efficient proliferation and adhesion of endothelial cells and fibroblasts. <em>In vivo</em> studies further revealed the biocompatibility and functionality of the scaffolds. These findings indicate that the prepared PA6/Fe(OH)<sub>3</sub> composite nanofibrous scaffolds can enable straightforward, safe, and efficient <em>in vivo</em> positive contrast MRI monitoring, thereby playing a pivotal role in the integration of diagnosis and treatment within tissue engineering scaffolds.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":"18 ","pages":"Article 100259"},"PeriodicalIF":7.0,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666542524000249/pdfft?md5=7b4f97a2bbd01d00ff50de3dfe931ee4&pid=1-s2.0-S2666542524000249-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140345441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recyclable ionic liquid-mediated synthesis of quinazolin-4(3H)-ones under metal-free and solvent-free conditions 在无金属和无溶剂条件下以可回收离子液体为媒介合成喹唑啉-4(3H)-酮类化合物
IF 7 1区 化学
GIANT Pub Date : 2024-03-27 DOI: 10.1016/j.giant.2024.100255
Xue Ma, Peng Li, Xuerou Chen, Siqi Li, Wuji Sun, Qidi Zhong
{"title":"Recyclable ionic liquid-mediated synthesis of quinazolin-4(3H)-ones under metal-free and solvent-free conditions","authors":"Xue Ma,&nbsp;Peng Li,&nbsp;Xuerou Chen,&nbsp;Siqi Li,&nbsp;Wuji Sun,&nbsp;Qidi Zhong","doi":"10.1016/j.giant.2024.100255","DOIUrl":"https://doi.org/10.1016/j.giant.2024.100255","url":null,"abstract":"<div><p>A metal-free and solvent-free method for the synthesis of quinazolin-4(3<em>H</em>)-ones is proposed by condensation cyclization of 2-aminobenzamides and aldehydes using 1-butyl-3-methylimida-zolium tetrafluoride ([Bmim]BF<sub>4</sub>) as ionic liquid catalyst. In this reaction, [Bmim]BF<sub>4</sub> acts as both a catalyst and a solvent without need for additional catalysts and solvents. This method exhibits favorable functional group tolerance in substrates and affords a series of desired products in moderate to excellent yields. In addition, it is noteworthy that the reaction yield is still as high as 87% after [Bmim]BF<sub>4</sub> is recycled at least four times.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":"18 ","pages":"Article 100255"},"PeriodicalIF":7.0,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666542524000201/pdfft?md5=cb66995979f1c6c7d115a4402a2e6423&pid=1-s2.0-S2666542524000201-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140342493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Carrier-free nanomedicines: Mechanisms of formation and biomedical applications 无载体纳米药物:形成机制和生物医学应用
IF 7 1区 化学
GIANT Pub Date : 2024-03-26 DOI: 10.1016/j.giant.2024.100256
Xinrui Dong , Hu Liu , Haibao Liu , Xiaoqin Zhang , Xiaoran Deng
{"title":"Carrier-free nanomedicines: Mechanisms of formation and biomedical applications","authors":"Xinrui Dong ,&nbsp;Hu Liu ,&nbsp;Haibao Liu ,&nbsp;Xiaoqin Zhang ,&nbsp;Xiaoran Deng","doi":"10.1016/j.giant.2024.100256","DOIUrl":"https://doi.org/10.1016/j.giant.2024.100256","url":null,"abstract":"<div><p>In recent years, significant advancements in nanotechnology have yielded remarkable improvements in biomedical applications. Nanocarriers, harnessed from the principles of nanotechnology, have garnered widespread utilization in medicine delivery and diagnostics. However, the progression of nanocarriers has been hindered by two key challenges: low drug loading capacity and the potential for carrier-induced toxicity. To surmount these obstacles, the rapid development and expansion of carrier-free drug delivery systems (CFDDSs) composed of pure drugs and prodrugs have emerged as a promising solution. Extensive endeavors have been undertaken to explore novel excipients, therapeutic agents, self-assembly processes, and therapeutic mechanisms, aimed at expanding the horizons of CFDDSs and enhancing their therapeutic efficacy. This comprehensive review provides an overview of CFDDSs, elucidating their self-assembly mechanisms. Additionally, we examine their diverse biomedical applications while shedding light on the challenges ahead for the future development and clinical implementation of CFDDSs. This review serves to enhance our understanding of the intricate mechanisms governing drug nanoassembly formation and fosters the advancement of CFDDSs in the expansive realm of biomedical research.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":"18 ","pages":"Article 100256"},"PeriodicalIF":7.0,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666542524000213/pdfft?md5=b9e4ba90f3133f3bf0ca392b0b3cc3de&pid=1-s2.0-S2666542524000213-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140339044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信