Itaconic acid-based 3D printed nanocomposites: An in-depth study on the effect of nanoinclusions on the physicochemical properties and the printability of formulations based on polyester itaconates

IF 5.4 1区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
GIANT Pub Date : 2024-05-03 DOI:10.1016/j.giant.2024.100275
Lazaros Papadopoulos , Lorenzo Pezzana , Natalia Malitowski , Nikolaos Kladovasilakis , Dimitrios Tzetzis , Marco Sangermano , Dimitrios N. Bikiaris , Tobias Robert
{"title":"Itaconic acid-based 3D printed nanocomposites: An in-depth study on the effect of nanoinclusions on the physicochemical properties and the printability of formulations based on polyester itaconates","authors":"Lazaros Papadopoulos ,&nbsp;Lorenzo Pezzana ,&nbsp;Natalia Malitowski ,&nbsp;Nikolaos Kladovasilakis ,&nbsp;Dimitrios Tzetzis ,&nbsp;Marco Sangermano ,&nbsp;Dimitrios N. Bikiaris ,&nbsp;Tobias Robert","doi":"10.1016/j.giant.2024.100275","DOIUrl":null,"url":null,"abstract":"<div><p>The demand for novel bio-based materials in UV-curing additive manufacturing has surged due to increasing environmental concerns and a growing emphasis on sustainable practices in the manufacturing industry. However, at the moment, their thermomechanical performance is not equal to that of their fossil-based counterparts and this impedes the acceptance of these materials within the industrial community. Therefore, in this study, a series of nanocomposite polyesters based on itaconic acid was synthesized for the first time with <em>in-situ</em> polymerization, in an attempt to leverage the unique properties of nanofillers and improve the overall performance of the material. A variety of reinforcing agents were utilized, namely cellulose nanocrystals (CNC), montmorillonite (MMT), graphene nanoplatelets (GNP) and titanium dioxide (TiO<sub>2</sub>), to understand the effect of each filler on the physicochemical properties of the polyester. Formulations of these polyesters were then prepared and processed on a digital light processing (DLP) 3D printer to prepare test specimens. Extensive thermomechanical characterization showed that the interference of the fillers with the UV curing process was the main parameter determining the mechanical performance of the 3D printed materials.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666542524000407/pdfft?md5=0f2c1408a2efe6b636093792c27970f3&pid=1-s2.0-S2666542524000407-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GIANT","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666542524000407","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The demand for novel bio-based materials in UV-curing additive manufacturing has surged due to increasing environmental concerns and a growing emphasis on sustainable practices in the manufacturing industry. However, at the moment, their thermomechanical performance is not equal to that of their fossil-based counterparts and this impedes the acceptance of these materials within the industrial community. Therefore, in this study, a series of nanocomposite polyesters based on itaconic acid was synthesized for the first time with in-situ polymerization, in an attempt to leverage the unique properties of nanofillers and improve the overall performance of the material. A variety of reinforcing agents were utilized, namely cellulose nanocrystals (CNC), montmorillonite (MMT), graphene nanoplatelets (GNP) and titanium dioxide (TiO2), to understand the effect of each filler on the physicochemical properties of the polyester. Formulations of these polyesters were then prepared and processed on a digital light processing (DLP) 3D printer to prepare test specimens. Extensive thermomechanical characterization showed that the interference of the fillers with the UV curing process was the main parameter determining the mechanical performance of the 3D printed materials.

Abstract Image

基于衣康酸的 3D 打印纳米复合材料:深入研究纳米夹杂物对基于聚酯衣康酸酯的配方的理化性质和可打印性的影响
由于对环境的日益关注以及制造业对可持续发展的日益重视,紫外固化快速成型制造对新型生物基材料的需求激增。然而,目前生物基材料的热机械性能还无法与化石基材料相提并论,这阻碍了工业界对生物基材料的认可。因此,本研究首次采用原位聚合法合成了一系列基于衣康酸的纳米复合聚酯,试图利用纳米填料的独特性能来提高材料的整体性能。为了了解每种填料对聚酯理化性质的影响,我们使用了多种增强剂,即纤维素纳米晶体(CNC)、蒙脱石(MMT)、石墨烯纳米片(GNP)和二氧化钛(TiO2)。然后制备了这些聚酯的配方,并在数字光处理(DLP)3D 打印机上进行了处理,以制备测试试样。广泛的热力学特性分析表明,填料对紫外线固化过程的干扰是决定三维打印材料力学性能的主要参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
GIANT
GIANT Multiple-
CiteScore
8.50
自引率
8.60%
发文量
46
审稿时长
42 days
期刊介绍: Giant is an interdisciplinary title focusing on fundamental and applied macromolecular science spanning all chemistry, physics, biology, and materials aspects of the field in the broadest sense. Key areas covered include macromolecular chemistry, supramolecular assembly, multiscale and multifunctional materials, organic-inorganic hybrid materials, biophysics, biomimetics and surface science. Core topics range from developments in synthesis, characterisation and assembly towards creating uniformly sized precision macromolecules with tailored properties, to the design and assembly of nanostructured materials in multiple dimensions, and further to the study of smart or living designer materials with tuneable multiscale properties.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信