Multifunctional ultraflexible neural probe for wireless optogenetics and electrophysiology

IF 5.4 1区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
GIANT Pub Date : 2024-04-26 DOI:10.1016/j.giant.2024.100272
Suhao Wang , Lixuan Li , Shun Zhang , Qianqian Jiang , Pengxian Li , Chengjun Wang , Rui Xiao , Xiao-Ming Li , Jizhou Song
{"title":"Multifunctional ultraflexible neural probe for wireless optogenetics and electrophysiology","authors":"Suhao Wang ,&nbsp;Lixuan Li ,&nbsp;Shun Zhang ,&nbsp;Qianqian Jiang ,&nbsp;Pengxian Li ,&nbsp;Chengjun Wang ,&nbsp;Rui Xiao ,&nbsp;Xiao-Ming Li ,&nbsp;Jizhou Song","doi":"10.1016/j.giant.2024.100272","DOIUrl":null,"url":null,"abstract":"<div><p>Electrophysiology and optogenetics are pivotal in neuroscience for probing and modulating neural activities, playing a vital role in unraveling the complexities of brain functionality. Despite their importance, the efficacy of existing devices is hampered by insufficient functional integration, pronounced foreign body reactions, and physical constraints that impede natural animal behaviors. Here, we develop a multifunctional, ultraflexible neural probe designed for simultaneous electrophysiological monitoring and optical neural modulation, along with mechanical properties that are conducive to flexibility and compliance. By integrating a wireless neural signal acquisition and stimulation circuit, we achieved wireless recording of brain signals in mice and wireless optogenetic control over their locomotor behavior. The multifunctional ultraflexible probe presented in this study holds substantial promise for closed-loop brain-machine interfaces and deepening our understanding of neural circuit functions. This innovative approach addresses the aforementioned limitations by a comprehensive solution for in vivo neural interrogation and manipulation, marking a significant advancement in the tools available for neuroscience research.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666542524000377/pdfft?md5=216656efa355addaa3e660f0f50af8f6&pid=1-s2.0-S2666542524000377-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GIANT","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666542524000377","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Electrophysiology and optogenetics are pivotal in neuroscience for probing and modulating neural activities, playing a vital role in unraveling the complexities of brain functionality. Despite their importance, the efficacy of existing devices is hampered by insufficient functional integration, pronounced foreign body reactions, and physical constraints that impede natural animal behaviors. Here, we develop a multifunctional, ultraflexible neural probe designed for simultaneous electrophysiological monitoring and optical neural modulation, along with mechanical properties that are conducive to flexibility and compliance. By integrating a wireless neural signal acquisition and stimulation circuit, we achieved wireless recording of brain signals in mice and wireless optogenetic control over their locomotor behavior. The multifunctional ultraflexible probe presented in this study holds substantial promise for closed-loop brain-machine interfaces and deepening our understanding of neural circuit functions. This innovative approach addresses the aforementioned limitations by a comprehensive solution for in vivo neural interrogation and manipulation, marking a significant advancement in the tools available for neuroscience research.

Abstract Image

用于无线光遗传学和电生理学的多功能超灵活神经探针
电生理学和光遗传学是神经科学中探测和调节神经活动的关键,在揭示大脑功能的复杂性方面发挥着至关重要的作用。尽管它们非常重要,但现有装置的功效却因功能整合不足、异物反应明显以及阻碍动物自然行为的物理限制而受到影响。在这里,我们开发了一种多功能、超柔性神经探针,可同时进行电生理监测和光学神经调制,并具有有利于灵活性和顺应性的机械特性。通过集成无线神经信号采集和刺激电路,我们实现了对小鼠大脑信号的无线记录和对其运动行为的无线光遗传控制。本研究中展示的多功能超柔性探针在闭环脑机接口和加深我们对神经回路功能的理解方面大有可为。这种创新方法解决了上述局限性,为体内神经检查和操作提供了全面的解决方案,标志着神经科学研究工具的重大进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
GIANT
GIANT Multiple-
CiteScore
8.50
自引率
8.60%
发文量
46
审稿时长
42 days
期刊介绍: Giant is an interdisciplinary title focusing on fundamental and applied macromolecular science spanning all chemistry, physics, biology, and materials aspects of the field in the broadest sense. Key areas covered include macromolecular chemistry, supramolecular assembly, multiscale and multifunctional materials, organic-inorganic hybrid materials, biophysics, biomimetics and surface science. Core topics range from developments in synthesis, characterisation and assembly towards creating uniformly sized precision macromolecules with tailored properties, to the design and assembly of nanostructured materials in multiple dimensions, and further to the study of smart or living designer materials with tuneable multiscale properties.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信