GIANT最新文献

筛选
英文 中文
Shape-memory and self-healing properties of sustainable cellulosic nanofibers-based hybrid materials for novel applications 用于新型应用的可持续纤维素纳米纤维基混合材料的形状记忆和自愈合特性
IF 7 1区 化学
GIANT Pub Date : 2024-06-05 DOI: 10.1016/j.giant.2024.100299
Muhammad Yasir Khalid , Zia Ullah Arif , Ans Al Rashid , Syed Muhammad Zubair Shah Bukhari , Mokarram Hossain , Muammer Koç
{"title":"Shape-memory and self-healing properties of sustainable cellulosic nanofibers-based hybrid materials for novel applications","authors":"Muhammad Yasir Khalid ,&nbsp;Zia Ullah Arif ,&nbsp;Ans Al Rashid ,&nbsp;Syed Muhammad Zubair Shah Bukhari ,&nbsp;Mokarram Hossain ,&nbsp;Muammer Koç","doi":"10.1016/j.giant.2024.100299","DOIUrl":"https://doi.org/10.1016/j.giant.2024.100299","url":null,"abstract":"<div><p>In the era of smart and sustainable technology driven by naturally occurring materials, various nanocellulose-based materials play a crucial role. Shape memory behaviour and self-healing capabilities of nanocelluloses are emerging as focal points in numerous research domains. Nanocellulose and its derivatives such as cellulose nanocrystals (CNC) and cellulose nanofibers (CNF), are currently in the limelight due to their excellent shape-memory and self-healing properties, making them suitable for multifunctional devices. In this regard, CNF, as a cutting-edge material, has spurred researchers to explore its potential in developing contemporary multifunctional and personalized health devices. Therefore, a timely and comprehensive review is essential to gain deep insights into the effectiveness of shape-memory and self-healing capabilities of CNF for multifunctional devices. Herein, we first provide a brief introduction to all nanocellulose materials. This review also depicts recent advancements and breakthroughs in the large and effective synthesis of CNF-based hybrid materials. Next, focusing on their self-healing and shape-memory performance, this review sheds new light on the advanced applications of CNF materials. Finally, perspectives on the current challenges and opportunities in this field are summarized for future researchers to gain an in-depth understanding of CNF-based smart and sustainable materials.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":"19 ","pages":"Article 100299"},"PeriodicalIF":7.0,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666542524000638/pdfft?md5=698e0a718ccfcff0f5325d34004623f9&pid=1-s2.0-S2666542524000638-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141325670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biopolymer networks packed with microgels combine strain stiffening and shape programmability 含有微凝胶的生物聚合物网络兼具应变刚性和形状可编程性
IF 7 1区 化学
GIANT Pub Date : 2024-06-03 DOI: 10.1016/j.giant.2024.100297
Vignesh Subramaniam , Abhishek M. Shetty , Steven J. Chisolm , Taylor R. Lansberry , Anjana Balachandar , Cameron D. Morley , Thomas E. Angelini
{"title":"Biopolymer networks packed with microgels combine strain stiffening and shape programmability","authors":"Vignesh Subramaniam ,&nbsp;Abhishek M. Shetty ,&nbsp;Steven J. Chisolm ,&nbsp;Taylor R. Lansberry ,&nbsp;Anjana Balachandar ,&nbsp;Cameron D. Morley ,&nbsp;Thomas E. Angelini","doi":"10.1016/j.giant.2024.100297","DOIUrl":"10.1016/j.giant.2024.100297","url":null,"abstract":"<div><p>Biomaterials that can be reversibly stiffened and shaped could be useful in broad biomedical applications where form-fitting scaffolds are needed. Here we investigate the combination of strong non-linear elasticity in biopolymer networks with the reconfigurability of packed hydrogel particles within a composite biomaterial. By packing microgels into collagen-1 networks and characterizing their linear and non-linear material properties, we empirically determine a scaling relationship that describes the synergistic dependence of the material's linear elastic shear modulus on the concentration of both components. We perform high-strain rheological tests and find that the materials strain stiffen and also exhibit a form of programmability, where no applied stress is required to maintain stiffened states of deformation after large strains are applied. We demonstrate that this non-linear rheological behavior can be used to shape samples that do not spontaneously relax large-scale bends, holding their deformed shapes for days. Detailed analysis of the frequency-dependent rheology reveals an unexpected connection to the rheology of living cells, where models of soft glasses capture their low-frequency behaviors and polymer elasticity models capture their high-frequency behaviors.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":"19 ","pages":"Article 100297"},"PeriodicalIF":7.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666542524000614/pdfft?md5=dbf98b7d3c75238d9d4aea341989ecfa&pid=1-s2.0-S2666542524000614-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141279286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Marine biomaterials for sustainable bone regeneration 用于可持续骨再生的海洋生物材料
IF 7 1区 化学
GIANT Pub Date : 2024-06-03 DOI: 10.1016/j.giant.2024.100298
Haowei Wang , Xinyu Li , Mingcheng Xuan , Ren Yang , Jianhui Zhang , Jinke Chang
{"title":"Marine biomaterials for sustainable bone regeneration","authors":"Haowei Wang ,&nbsp;Xinyu Li ,&nbsp;Mingcheng Xuan ,&nbsp;Ren Yang ,&nbsp;Jianhui Zhang ,&nbsp;Jinke Chang","doi":"10.1016/j.giant.2024.100298","DOIUrl":"10.1016/j.giant.2024.100298","url":null,"abstract":"<div><p>The field of bone regeneration has witnessed significant advancements with the exploration and incorporation of marine biomaterials, offering promising avenues for orthopaedic and dental applications. Marine environments are a rich source of biological materials with unique properties conducive to bone healing and regeneration. Repurposing and reusing some waste by-products of marine products for bone regeneration not only contribute to environmental protection but also drives the development of the marine economy, thereby achieving sustainable development. Moreover, the lower production costs associated with the abundant availability and easy processing of marine biomaterials make bone regeneration therapies more accessible to a broader population, enhancing global health equity. By exploring the current research progressions on marine biomaterials and recounting their sources, properties, mechanisms of action, and applications in bone regeneration research, this review provides a comprehensive overview of the potential and challenges of marine biomaterials for future bone healing and regeneration applications.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":"19 ","pages":"Article 100298"},"PeriodicalIF":7.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666542524000626/pdfft?md5=a03d96aa25308d97417bfcb70ff6819e&pid=1-s2.0-S2666542524000626-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141277351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Skin-like breathable wound dressings with antimicrobial and hemostatic properties 具有抗菌和止血功能的类肤透气伤口敷料
IF 7 1区 化学
GIANT Pub Date : 2024-06-03 DOI: 10.1016/j.giant.2024.100300
Hanbai Wu , Chuanwei Zhi , Yuhan Chen , Xiong Zhou , Cong Wang , Raymond H.W. Lam , Tingwu Qin , Guibing Fu , Zhu Xiong , Kaisong Huang , Jia-Horng Lin , Shuo Shi , Jinlian Hu
{"title":"Skin-like breathable wound dressings with antimicrobial and hemostatic properties","authors":"Hanbai Wu ,&nbsp;Chuanwei Zhi ,&nbsp;Yuhan Chen ,&nbsp;Xiong Zhou ,&nbsp;Cong Wang ,&nbsp;Raymond H.W. Lam ,&nbsp;Tingwu Qin ,&nbsp;Guibing Fu ,&nbsp;Zhu Xiong ,&nbsp;Kaisong Huang ,&nbsp;Jia-Horng Lin ,&nbsp;Shuo Shi ,&nbsp;Jinlian Hu","doi":"10.1016/j.giant.2024.100300","DOIUrl":"10.1016/j.giant.2024.100300","url":null,"abstract":"<div><p>Wound healing requires a contamination-free, sterile, and breathable environment. However, to develop an ideal wound dressing with all these functionalities simultaneously poses significant challenges. In this study, we designed a wound dressing that mimics the structure of skin with good breathability and protective functions. The wound dressing consists of a hydrophilic Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P34HB) membrane coated with zinc oxide nanoparticles and a hydrophobic polyvinylidene fluoride (PVDF) membrane. Meanwhile, plasma treatment was also utilized to bond the two layers, resulting in an enhancement of 60 % in mechanical properties. The crosslinked fibrous membranes exhibited uniform stress distribution when stretching. Due to the unique structures of the wound dressing, it demonstrates wound exudate management, antibacterial functions, and hemostatic properties. The hydrophobic layer guided wound exudate towards the hydrophilic layer and the zinc oxide nanoparticles acted as a barrier against external bacteria and released zinc ions to inhibit bacterial growth in the exudate. Moreover, the water vapor transmission rate (WVTR) was measured to be over 86.55 kg/m<sup>2</sup>/day, the hemolysis rate was 2.38 %, and an impressive 81.98 % healing rate was recorded during in vitro wound healing. This skin-mimicking wound dressing shows great potential as a promising solution for the therapy of chronic wounds and infections.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":"19 ","pages":"Article 100300"},"PeriodicalIF":7.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266654252400064X/pdfft?md5=aca2c6568e1d3af723d9eaa731161789&pid=1-s2.0-S266654252400064X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141276137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sustainable foams from hemp, lignin, xylan, pectin, and glycerol: tunable via reversible citric acid crosslinking for absorption and insulation applications 由大麻、木质素、木聚糖、果胶和甘油制成的可持续泡沫:可通过可逆柠檬酸交联进行调节,用于吸收和隔热应用
IF 7 1区 化学
GIANT Pub Date : 2024-05-30 DOI: 10.1016/j.giant.2024.100295
Sergejs Beluns , Oskars Platnieks , Maksims Jurinovs , Rinalds Buss , Sergejs Gaidukovs , Liga Orlova , Olesja Starkova , Vijay Kumar Thakur
{"title":"Sustainable foams from hemp, lignin, xylan, pectin, and glycerol: tunable via reversible citric acid crosslinking for absorption and insulation applications","authors":"Sergejs Beluns ,&nbsp;Oskars Platnieks ,&nbsp;Maksims Jurinovs ,&nbsp;Rinalds Buss ,&nbsp;Sergejs Gaidukovs ,&nbsp;Liga Orlova ,&nbsp;Olesja Starkova ,&nbsp;Vijay Kumar Thakur","doi":"10.1016/j.giant.2024.100295","DOIUrl":"https://doi.org/10.1016/j.giant.2024.100295","url":null,"abstract":"<div><p>This study investigates the development of sustainable multifunctional foams utilizing hemp stalk waste, lignin, xylan, pectin, glycerol, and citric acid. Using the freeze-drying method for foam formation in combination with industrial waste products and renewable resources, we emphasize a green, scalable material development approach. In total, 25 distinct formulations were prepared and methodically examined, mainly focusing on the roles of citric acid, pectin, and glycerol. Thermal crosslinking, conducted at 140°C, was analyzed using FTIR, confirming the formation of ester bonds. The microstructural characterization of the foams revealed distinct variations from nanofibrillar to microfibrillar structures based on composition. The bulk density of the foams ranged from 13 to 152 mg/cm<sup>3</sup>, and porosity values varied from 97 % to 99 % for most of the compositions. Foams showed up to 50 g/g water, 51 g/g rapeseed oil, and 46 g/g kerosine absorption. Foam absorption capacity changes were examined through 10 iterative cycles in water, demonstrating that most compositions retained near-original absorption capacities. Adding glycerol conferred exceptional hydrophobic properties to the foam surfaces, as evidenced by water contact angles ranging between 140° and 150°. The thermal conductivity of foams ranged from 0.040 to 0.046 W/mK. The mechanical properties of foams were assessed using compression testing, which showed highly tunable structures ranging from soft to rigid. This study illustrates the broad applicability of these foams, emphasizing their utility in thermal insulation, filtration systems, and environmental cleanup, among other potential uses.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":"19 ","pages":"Article 100295"},"PeriodicalIF":7.0,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666542524000596/pdfft?md5=d4389efb52dbf3b33684d3bea4ec53ac&pid=1-s2.0-S2666542524000596-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141291433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Converting “sliding” to “rolling” design for high-performance lubricating hydrogel 将高性能润滑水凝胶的 "滑动 "设计转变为 "滚动 "设计
IF 7 1区 化学
GIANT Pub Date : 2024-05-29 DOI: 10.1016/j.giant.2024.100296
Fangbin Fan , Jinrui Han , Li Zhao , Bo Yu , Meirong Cai , Xiaowei Pei , Zhizhi Zhang , Shuanhong Ma , Yanfei Ma , Feng Zhou
{"title":"Converting “sliding” to “rolling” design for high-performance lubricating hydrogel","authors":"Fangbin Fan ,&nbsp;Jinrui Han ,&nbsp;Li Zhao ,&nbsp;Bo Yu ,&nbsp;Meirong Cai ,&nbsp;Xiaowei Pei ,&nbsp;Zhizhi Zhang ,&nbsp;Shuanhong Ma ,&nbsp;Yanfei Ma ,&nbsp;Feng Zhou","doi":"10.1016/j.giant.2024.100296","DOIUrl":"https://doi.org/10.1016/j.giant.2024.100296","url":null,"abstract":"<div><p>Despite the excellent lubricity of conventional hydrogel materials due to their wet-soft properties, they produce severe mechanical elastic deformation at higher interfacial contact stresses. Balancing the load-bearing capacity and lubricating properties of hydrogel material is the difficulty of the current research work for articular cartilage substitutes. Great progress has been made in developing bionic joint materials with high load-bearing and low-friction hydrogels based on gradient designs. However, most bionic materials are based on sliding friction greatly limiting the improvement of lubrication performance. Herein, we designed and prepared a new hydrogel material with high load-bearing capacity and stable lubrication performance, breaking through the traditional friction method and turning to “sliding” for “rolling”. The network on the hydrogel surface was dissociated by UV irradiation and the pores on the surface were filled with SiO<sub>2</sub> nanoparticles. The dense network structure of the underlying layer endows the hydrogel material with good load-bearing properties, while the high degree of hydration of the surface layer and the rolling friction effect of SiO<sub>2</sub> nanoparticles greatly enhance the lubrication property. With the synergistic effect of these designs, the multi-layered hydrogel with nanoparticles on the surface achieved an ultra-low average coefficient of friction (COF) of ∼0.00809 at a high load of 50 N during 30,000 cycles. This idea of hydrogel material design provides a new strategy for the replacement of biomimetic articular cartilage materials.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":"19 ","pages":"Article 100296"},"PeriodicalIF":7.0,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666542524000602/pdfft?md5=9e948d92c08290c6a4a291f202e87a66&pid=1-s2.0-S2666542524000602-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141263810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
n-Type polythiophene as a hole-blocking layer in inverted organic photodetectors 在倒置有机光电探测器中用作空穴阻挡层的 n 型聚噻吩
IF 7 1区 化学
GIANT Pub Date : 2024-05-28 DOI: 10.1016/j.giant.2024.100291
Jiahui Wang , Sihui Deng , Jun Ma , Junli Hu , Jun Liu
{"title":"n-Type polythiophene as a hole-blocking layer in inverted organic photodetectors","authors":"Jiahui Wang ,&nbsp;Sihui Deng ,&nbsp;Jun Ma ,&nbsp;Junli Hu ,&nbsp;Jun Liu","doi":"10.1016/j.giant.2024.100291","DOIUrl":"https://doi.org/10.1016/j.giant.2024.100291","url":null,"abstract":"<div><p>Organic photodetectors (OPDs) own unique advantages such as light weight, flexibility, low production cost, tunable detection wavelength, and thus are promising for a variety of applications. The lack of hole-blocking layer (HBL) materials impedes the reduction of dark current density and the enhancement of the performance of OPDs. Herein, we employed an n-type polythiophene n-PT1 as a HBL material for inverted OPDs. The specific solubility of n-PT1 in <em>o</em>-dichlorobenzene facilitates solution processing and enables multilayer device fabrication. The ultradeep-lying highest occupied molecular orbital energy level ensures a large hole injection barrier between cathode and active layer that suppresses dark current. As a result, compared to the control devices without n-PT1, the inverted OPD devices with n-PT1 as HBL demonstrate a two-order-of-magnitude reduction in dark current density and a one-order-of-magnitude increase in specific detectivity. To the best of our knowledge, this is the first solution processable HBL material for inverted OPDs.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":"19 ","pages":"Article 100291"},"PeriodicalIF":7.0,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666542524000559/pdfft?md5=00a8df932071896f4695480d271d09fc&pid=1-s2.0-S2666542524000559-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141263900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergistically manipulating the shape of alkyl-chain and asymmetric side groups of non-fullerene acceptors enables organic solar cells to reach 18.5% efficiency 协同操纵非富勒烯受体的烷基链和不对称侧基的形状,使有机太阳能电池的效率达到 18.5%
IF 7 1区 化学
GIANT Pub Date : 2024-05-23 DOI: 10.1016/j.giant.2024.100294
Xinyu Tong , Zhenyu Chen , Jingyu Shi , Jinfeng Ge , Wei Song , Yuanyuan Meng , Ziyi Ge
{"title":"Synergistically manipulating the shape of alkyl-chain and asymmetric side groups of non-fullerene acceptors enables organic solar cells to reach 18.5% efficiency","authors":"Xinyu Tong ,&nbsp;Zhenyu Chen ,&nbsp;Jingyu Shi ,&nbsp;Jinfeng Ge ,&nbsp;Wei Song ,&nbsp;Yuanyuan Meng ,&nbsp;Ziyi Ge","doi":"10.1016/j.giant.2024.100294","DOIUrl":"10.1016/j.giant.2024.100294","url":null,"abstract":"<div><p>Side-chain modification and asymmetric design for non-fullerene acceptors (NFAs) have been proven to be effective methods for harvesting high-performance organic solar cells (OSCs). Combining the two molecular design strategies, we adopted phenyl chain and alkyl chains with different shapes to develop two novel asymmetric NFAs, named BTP-P2EH<img>C11 and BTP-P2EH<img>C2C4. Compared with BTP-P2EH<img>C2C4 attached 2-ethylhexyl side chain, BTP-P2EH<img>C11 with linear alkyl side chain have slightly red-shifted absorption and intensive absorption strength. Moreover, the PM6:BTP-P2EH<img>C11 blend film presents higher and more balanced charge mobilities, reducing charge recombination, tighter intermolecular packing and more favorable fibrous network morphology with appropriate phase separation than PM6:BTP-P2EH<img>C2C4, which lead to significantly enhanced short-circuit current density (<em>J</em><sub>SC</sub>) of PM6:BTP-P2EH<img>C11-based devices. Thus, the OSCs based on PM6:BTP-P2EH<img>C11 achieve a superior power conversion efficiency (PCE) of 18.50% with a good trade-off among open-circuit voltage (<em>V</em><sub>OC</sub>) of 0.876 V, <em>J</em><sub>SC</sub> of 26.85 mA cm<sup>−2</sup> and fill factor (FF) of 78.65%, while PM6:BTP-P2EH<img>C2C4-based device exhibits a lower PCE of 17.49%. Our investigation elucidates that the combination of finely optimizing the shape of alkyl-chain and asymmetric side groups of NFAs could pave a promising avenue toward morphology optimization and performance promotion of OSCs.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":"19 ","pages":"Article 100294"},"PeriodicalIF":7.0,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666542524000584/pdfft?md5=fa4baf84a06e851e2e43996b95063119&pid=1-s2.0-S2666542524000584-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141139680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fatigue failure of soft adhesive systems: A state-of-the-art review 软粘合剂系统的疲劳失效:最新技术综述
IF 7 1区 化学
GIANT Pub Date : 2024-05-23 DOI: 10.1016/j.giant.2024.100292
Chengbin Yao , Yan Xia , Zhuoran Yang , Zhongmeng Zhu , Zheyu Li , Han Jiang
{"title":"Fatigue failure of soft adhesive systems: A state-of-the-art review","authors":"Chengbin Yao ,&nbsp;Yan Xia ,&nbsp;Zhuoran Yang ,&nbsp;Zhongmeng Zhu ,&nbsp;Zheyu Li ,&nbsp;Han Jiang","doi":"10.1016/j.giant.2024.100292","DOIUrl":"10.1016/j.giant.2024.100292","url":null,"abstract":"<div><p>Soft adhesive systems (SASs), which consist of a soft adhesive layer and/or soft adherends, have been extensively applied in advanced fields such as biomedicine, flexible electronics, and soft robotics. Understanding the fatigue failure of SASs is crucial for ensuring their structural safety and functional stability, as they are often subjected to fatigue loading. This paper systematically reviews the fatigue failure of SASs, aiming to provide a comprehensive understanding and contribute to the study of fatigue failure mechanisms and lifetime prediction of SASs. The review starts by introducing classical research methods for fatigue failure of adhesive systems, with a focus on total fatigue lifetime and fatigue crack growth (FCG). After summarizing the complexity of fatigue failure in SASs, it provides an overview of fatigue research for the three types of SASs: “soft interface”, “soft adherend”, and “soft-soft” adhesive systems. Then, the relations between the fatigue failure and energy dissipation of various SASs are specifically discussed noting that significant energy dissipation accompanying the cyclic deformation of SASs during fatigue loading can substantially affect the final fatigue failure of SASs. Finally, the current unresolved issues and challenges in this field are presented.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":"19 ","pages":"Article 100292"},"PeriodicalIF":7.0,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666542524000560/pdfft?md5=aad0e74ea6f71b9ca50d483c6a2a3d45&pid=1-s2.0-S2666542524000560-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141133596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Raining-inspired method for construction of porous film material 受雨水启发的多孔薄膜材料构建方法
IF 7 1区 化学
GIANT Pub Date : 2024-05-23 DOI: 10.1016/j.giant.2024.100293
Xiaomin Wang , Heyi Pan , Lin Lian , Xiangjun Gong , Yang Wang , Chaoqun Zhang
{"title":"Raining-inspired method for construction of porous film material","authors":"Xiaomin Wang ,&nbsp;Heyi Pan ,&nbsp;Lin Lian ,&nbsp;Xiangjun Gong ,&nbsp;Yang Wang ,&nbsp;Chaoqun Zhang","doi":"10.1016/j.giant.2024.100293","DOIUrl":"10.1016/j.giant.2024.100293","url":null,"abstract":"<div><p>The low-temperature environment caused by solvent evaporation leads to the condensation of water vapor into water droplets that remain on the surface of the film to form breath figure patterns. The conventional approach to regulate the pore morphology in the breath figure process is to optimize the ambient temperature, humidity, and solution concentration. However, realizing a wide adjustable window of pore size and uniform distribution of the pore are still challenges. Here, inspired by the rainfall phenomenon, we proposed a simple and efficient method called the “raining boxing method” (RBM) for preparing porous films based on exogenously given water droplets as templates. The RBM broadened the adjustable window of pore size (0.6–225 µm in this work) and solved the inherent problem of radial reduction of pore size from the film center to the edge caused by the significant difference in low-temperature duration at different locations accompanying the solvent evaporation process. Furthermore, this method could realize multi-types porous films, including surface porous films, spongy porous films, and honeycomb porous films, and could be universally applied in the casting process of various polymer solutions.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":"19 ","pages":"Article 100293"},"PeriodicalIF":7.0,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666542524000572/pdfft?md5=6f318d42175150e218508c27aab69e8e&pid=1-s2.0-S2666542524000572-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141145227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信