Kang-Ping Liu, Aum Sagar Panda, Wen-Chi Huang, Rong-Ming Ho
{"title":"Vacuum-driven orientation of Nanostructured polystyrene-block-Poly(L-lactide) block copolymer thin films for Nanopatterning","authors":"Kang-Ping Liu, Aum Sagar Panda, Wen-Chi Huang, Rong-Ming Ho","doi":"10.1016/j.giant.2024.100303","DOIUrl":null,"url":null,"abstract":"<div><p>Herein, we demonstrate a simple approach to control the orientation of cylinder-forming nanostructures in polystyrene-<em>block</em>-poly(L-lactide) (PS-<em>b</em>-PLLA) BCP thin films through thermal annealing under a high-vacuum environment. Surface tension discrepancy between the constituent blocks is critical in controlling the aimed orientation of self-assembled nanostructures in block copolymer (BCP) thin films. For BCP self-assembly, temperature has been widely utilized as a thermodynamic state variable under ambient pressure conditions, whereas the use of high vacuum (low pressure) for thermal annealing is limited. It has been observed that temperature can alter the surface tension only marginally with increasing temperature for polymeric materials; as a result, the pressure dependence of surface tension for PS and PLLA was investigated. By increasing the vacuum degree during thermal annealing, the surface tension discrepancy between the PS and PLLA blocks can be reduced significantly. Accordingly, during thermal annealing under high vacuum degree, a neutral air polymer interface can be generated for the BCP thin films, resulting in the formation of perpendicular cylinders from the neutral surface of the thin film through BCP microphase separation.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":"19 ","pages":"Article 100303"},"PeriodicalIF":5.4000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666542524000675/pdfft?md5=16466fc27ba783b163fe868230e90d82&pid=1-s2.0-S2666542524000675-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GIANT","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666542524000675","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Herein, we demonstrate a simple approach to control the orientation of cylinder-forming nanostructures in polystyrene-block-poly(L-lactide) (PS-b-PLLA) BCP thin films through thermal annealing under a high-vacuum environment. Surface tension discrepancy between the constituent blocks is critical in controlling the aimed orientation of self-assembled nanostructures in block copolymer (BCP) thin films. For BCP self-assembly, temperature has been widely utilized as a thermodynamic state variable under ambient pressure conditions, whereas the use of high vacuum (low pressure) for thermal annealing is limited. It has been observed that temperature can alter the surface tension only marginally with increasing temperature for polymeric materials; as a result, the pressure dependence of surface tension for PS and PLLA was investigated. By increasing the vacuum degree during thermal annealing, the surface tension discrepancy between the PS and PLLA blocks can be reduced significantly. Accordingly, during thermal annealing under high vacuum degree, a neutral air polymer interface can be generated for the BCP thin films, resulting in the formation of perpendicular cylinders from the neutral surface of the thin film through BCP microphase separation.
期刊介绍:
Giant is an interdisciplinary title focusing on fundamental and applied macromolecular science spanning all chemistry, physics, biology, and materials aspects of the field in the broadest sense. Key areas covered include macromolecular chemistry, supramolecular assembly, multiscale and multifunctional materials, organic-inorganic hybrid materials, biophysics, biomimetics and surface science. Core topics range from developments in synthesis, characterisation and assembly towards creating uniformly sized precision macromolecules with tailored properties, to the design and assembly of nanostructured materials in multiple dimensions, and further to the study of smart or living designer materials with tuneable multiscale properties.