多糖基材料作为生物医学、环境和食品包装的生态友好型替代品

IF 5.4 1区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
GIANT Pub Date : 2024-06-06 DOI:10.1016/j.giant.2024.100301
Zahra Behrooznia, Jhamak Nourmohammadi
{"title":"多糖基材料作为生物医学、环境和食品包装的生态友好型替代品","authors":"Zahra Behrooznia,&nbsp;Jhamak Nourmohammadi","doi":"10.1016/j.giant.2024.100301","DOIUrl":null,"url":null,"abstract":"<div><p>The global community has encountered numerous challenges concerning environmental sustainability, encompassing issues like waste generation, depletion of natural resources, air pollution, and other threats to human well-being. Consequently, the pursuit of an eco-friendly environment has emerged as a critical concern in recent years. Polysaccharides, being natural biopolymers, have garnered significant attention owing to their distinctive properties that make them versatile for various applications. Numerous sustainable and environmentally friendly polysaccharides, such as chitosan, cellulose, starch, hyaluronic acid, alginate, and inulin, have been identified. This article highlights the characteristics of renewable polysaccharides, their categorization, and their potential to contribute to environmental sustainability. It introduces environmentally friendly extraction methods aimed at minimizing chemical pollution. Through the careful selection of diverse polysaccharides and the application of functionalization techniques, the article suggests the possibility of obtaining suitable superabsorbent hydrogels, appropriate nanocomposites, and effective scaffolds. The significance of utilizing polysaccharide-based materials is explored in detail, emphasizing their exceptional properties. Additionally, the article discusses the various applications of eco-friendly polysaccharides as sustainable polymers, including in agriculture, biomedicine, and food packaging.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":"19 ","pages":"Article 100301"},"PeriodicalIF":5.4000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666542524000651/pdfft?md5=390407726990f339865f62ae63bf666b&pid=1-s2.0-S2666542524000651-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Polysaccharide-based materials as an eco-friendly alternative in biomedical, environmental, and food packaging\",\"authors\":\"Zahra Behrooznia,&nbsp;Jhamak Nourmohammadi\",\"doi\":\"10.1016/j.giant.2024.100301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The global community has encountered numerous challenges concerning environmental sustainability, encompassing issues like waste generation, depletion of natural resources, air pollution, and other threats to human well-being. Consequently, the pursuit of an eco-friendly environment has emerged as a critical concern in recent years. Polysaccharides, being natural biopolymers, have garnered significant attention owing to their distinctive properties that make them versatile for various applications. Numerous sustainable and environmentally friendly polysaccharides, such as chitosan, cellulose, starch, hyaluronic acid, alginate, and inulin, have been identified. This article highlights the characteristics of renewable polysaccharides, their categorization, and their potential to contribute to environmental sustainability. It introduces environmentally friendly extraction methods aimed at minimizing chemical pollution. Through the careful selection of diverse polysaccharides and the application of functionalization techniques, the article suggests the possibility of obtaining suitable superabsorbent hydrogels, appropriate nanocomposites, and effective scaffolds. The significance of utilizing polysaccharide-based materials is explored in detail, emphasizing their exceptional properties. Additionally, the article discusses the various applications of eco-friendly polysaccharides as sustainable polymers, including in agriculture, biomedicine, and food packaging.</p></div>\",\"PeriodicalId\":34151,\"journal\":{\"name\":\"GIANT\",\"volume\":\"19 \",\"pages\":\"Article 100301\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666542524000651/pdfft?md5=390407726990f339865f62ae63bf666b&pid=1-s2.0-S2666542524000651-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GIANT\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666542524000651\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GIANT","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666542524000651","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

全球社会在环境可持续性方面遇到了诸多挑战,包括废物产生、自然资源枯竭、空气污染等问题,以及对人类福祉的其他威胁。因此,追求生态友好型环境已成为近年来人们关注的一个重要问题。作为天然生物聚合物,多糖因其独特的特性而备受关注,这些特性使其具有多种用途。目前已发现许多可持续的环保型多糖,如壳聚糖、纤维素、淀粉、透明质酸、海藻酸和菊粉。本文重点介绍了可再生多糖的特点、分类及其促进环境可持续发展的潜力。文章介绍了旨在尽量减少化学污染的环境友好型提取方法。通过精心挑选各种多糖并应用功能化技术,文章提出了获得合适的超吸水性水凝胶、适当的纳米复合材料和有效支架的可能性。文章详细探讨了利用多糖类材料的意义,强调了它们的特殊性能。此外,文章还讨论了生态友好型多糖作为可持续聚合物在农业、生物医学和食品包装等领域的各种应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Polysaccharide-based materials as an eco-friendly alternative in biomedical, environmental, and food packaging

Polysaccharide-based materials as an eco-friendly alternative in biomedical, environmental, and food packaging

The global community has encountered numerous challenges concerning environmental sustainability, encompassing issues like waste generation, depletion of natural resources, air pollution, and other threats to human well-being. Consequently, the pursuit of an eco-friendly environment has emerged as a critical concern in recent years. Polysaccharides, being natural biopolymers, have garnered significant attention owing to their distinctive properties that make them versatile for various applications. Numerous sustainable and environmentally friendly polysaccharides, such as chitosan, cellulose, starch, hyaluronic acid, alginate, and inulin, have been identified. This article highlights the characteristics of renewable polysaccharides, their categorization, and their potential to contribute to environmental sustainability. It introduces environmentally friendly extraction methods aimed at minimizing chemical pollution. Through the careful selection of diverse polysaccharides and the application of functionalization techniques, the article suggests the possibility of obtaining suitable superabsorbent hydrogels, appropriate nanocomposites, and effective scaffolds. The significance of utilizing polysaccharide-based materials is explored in detail, emphasizing their exceptional properties. Additionally, the article discusses the various applications of eco-friendly polysaccharides as sustainable polymers, including in agriculture, biomedicine, and food packaging.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
GIANT
GIANT Multiple-
CiteScore
8.50
自引率
8.60%
发文量
46
审稿时长
42 days
期刊介绍: Giant is an interdisciplinary title focusing on fundamental and applied macromolecular science spanning all chemistry, physics, biology, and materials aspects of the field in the broadest sense. Key areas covered include macromolecular chemistry, supramolecular assembly, multiscale and multifunctional materials, organic-inorganic hybrid materials, biophysics, biomimetics and surface science. Core topics range from developments in synthesis, characterisation and assembly towards creating uniformly sized precision macromolecules with tailored properties, to the design and assembly of nanostructured materials in multiple dimensions, and further to the study of smart or living designer materials with tuneable multiscale properties.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信