IEEE Open Journal of Engineering in Medicine and Biology最新文献

筛选
英文 中文
NDL-Net: A Hybrid Deep Learning Framework for Diagnosing Neonatal Respiratory Distress Syndrome From Chest X-Rays NDL-Net:从胸部x光片诊断新生儿呼吸窘迫综合征的混合深度学习框架
IF 2.7
IEEE Open Journal of Engineering in Medicine and Biology Pub Date : 2025-03-05 DOI: 10.1109/OJEMB.2025.3548613
Malik Muhammad Arslan;Xiaodong Yang;Nan Zhao;Lei Guan;Tao Cui;Daniyal Haider
{"title":"NDL-Net: A Hybrid Deep Learning Framework for Diagnosing Neonatal Respiratory Distress Syndrome From Chest X-Rays","authors":"Malik Muhammad Arslan;Xiaodong Yang;Nan Zhao;Lei Guan;Tao Cui;Daniyal Haider","doi":"10.1109/OJEMB.2025.3548613","DOIUrl":"https://doi.org/10.1109/OJEMB.2025.3548613","url":null,"abstract":"<italic>Objective:</i> Neonatal Respiratory Distress Syndrome (NRDS) poses a significant threat to newborn health, necessitating timely and accurate diagnosis. This study introduces NDL-Net, an innovative hybrid deep learning framework designed to diagnose NRDS from chest X-rays (CXR). <italic>Results:</i> The architecture combines MobileNetV3 Large for efficient image processing and ResNet50 for detecting complex patterns essential for NRDS identification. Additionally, a Long Short-Term Memory (LSTM) layer analyzes temporal variations in imaging data, enhancing predictive accuracy. Extensive evaluation on neonatal CXR datasets demonstrated NDL-Net's high diagnostic performance, achieving 98.09% accuracy, 97.45% precision, 98.73% sensitivity, 98.08% F1-score, and 98.73% specificity. The model's low false negative and false positive rates underscore its superior diagnostic capabilities. <italic>Conclusion:</i> NDL-Net represents a significant advancement in medical diagnostics, improving neonatal care through early detection and management of NRDS.","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":"6 ","pages":"407-412"},"PeriodicalIF":2.7,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10914519","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143821686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MVBNSleepNet: A Multi-View Brain Network-Based Convolutional Neural Network for Neonatal Sleep Staging MVBNSleepNet:一种基于多视图脑网络的新生儿睡眠分期卷积神经网络
IF 2.7
IEEE Open Journal of Engineering in Medicine and Biology Pub Date : 2025-03-05 DOI: 10.1109/OJEMB.2025.3548002
Ligang Zhou;Minghui Liu;Xia Hu;Laishuan Wang;Yan Xu;Chen Chen;Wei Chen
{"title":"MVBNSleepNet: A Multi-View Brain Network-Based Convolutional Neural Network for Neonatal Sleep Staging","authors":"Ligang Zhou;Minghui Liu;Xia Hu;Laishuan Wang;Yan Xu;Chen Chen;Wei Chen","doi":"10.1109/OJEMB.2025.3548002","DOIUrl":"https://doi.org/10.1109/OJEMB.2025.3548002","url":null,"abstract":"<italic>Goal:</i> To develop a high-performance and robust solution for neonatal sleep staging that incorporates spatial topological information and functional connectivity of the brain, which are often overlooked in existing approaches. <italic>Methods:</i> We propose MVBNSleepNet, a multi-view brain network-based convolutional neural network. The framework integrates a multi-view brain network (MVBN) to characterize brain functional connectivity from linear temporal correlation, information-theoretic, and phase-dynamics perspectives, providing comprehensive spatial topological information. A masking mechanism is employed to enhance model robustness by simulating random dropout or low-quality signal conditions. Additionally, an attention mechanism focuses on key regions of the brain network and reveals structural brain connectivity during sleep, while a CNN module extracts spatial features from brain networks and classifies them into specific sleep stages. The model was validated on a clinical dataset of 64 neonatal EEG recordings using a leave-one-subject-out validation strategy. <italic>Results:</i> MVBNSleepNet achieved an accuracy of 83.9% in the two-stage sleep task (sleep and wakefulness) and 76.4% in the three-stage task (active sleep, quiet sleep, and wakefulness), outperforming state-of-the-art methods. <italic>Conclusions:</i> The proposed MVBNSleepNet provides a robust and accurate solution for neonatal sleep staging and offers valuable insights into the functional connectivity of the early neural system.","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":"6 ","pages":"459-464"},"PeriodicalIF":2.7,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10914539","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143949216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Source-Detector Geometry Analysis of Reflective PPG by Measurements and Simulations 基于测量和仿真的反射式PPG源探测器几何分析
IF 2.7
IEEE Open Journal of Engineering in Medicine and Biology Pub Date : 2025-02-28 DOI: 10.1109/OJEMB.2025.3546771
M. Reiser;T. Mueller;A. Breidenassel;O. Amft
{"title":"Source-Detector Geometry Analysis of Reflective PPG by Measurements and Simulations","authors":"M. Reiser;T. Mueller;A. Breidenassel;O. Amft","doi":"10.1109/OJEMB.2025.3546771","DOIUrl":"https://doi.org/10.1109/OJEMB.2025.3546771","url":null,"abstract":"<italic>Goal:</i> We investigate the effect of source-detector geometry, including distance and angle, on the reflective photoplethysmography (PPG) signal. <italic>Methods:</i> A porcine skin phantom was used for laboratory measurements and replicated by Monte Carlo simulations. Variations in sensor geometry were analysed. <italic>Results:</i> Laboratory measurements and Monte Carlo simulations showed agreement for various geometry settings. With decreasing negative sensor angle, the differential path length factor and the average maximum penetration depth increases. <italic>Conclusions:</i> Our analyses highlight the influence of source-detector geometry on the PPG DC signal. Based on our analysis of penetration depth and optical path length, the geometry effects can be transferred to the PPG AC signal too. MC simulations provide an important tool to optimise PPG performance.","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":"6 ","pages":"400-406"},"PeriodicalIF":2.7,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10908070","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143821866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in Electroencephalography for Post-Traumatic Stress Disorder Identification: A Scoping Review 脑电诊断创伤后应激障碍的进展:范围综述
IF 2.7
IEEE Open Journal of Engineering in Medicine and Biology Pub Date : 2025-02-05 DOI: 10.1109/OJEMB.2025.3538498
José A. Salazar-Castro;Diego H. Peluffo-Ordóñez;Diego M. López
{"title":"Advances in Electroencephalography for Post-Traumatic Stress Disorder Identification: A Scoping Review","authors":"José A. Salazar-Castro;Diego H. Peluffo-Ordóñez;Diego M. López","doi":"10.1109/OJEMB.2025.3538498","DOIUrl":"https://doi.org/10.1109/OJEMB.2025.3538498","url":null,"abstract":"<italic>Background:</i> Post-traumatic stress disorder (PTSD) is a psychophysiological condition caused by traumatic experiences. Its diagnosis typically relies on subjective tools like clinical interviews and self-reports. <italic>Objectives:</i> This scoping review analyzes computational methods using EEG signal processing for PTSD diagnosis, differentiation, and therapy. It provides a comprehensive overview of the entire EEG analysis pipeline, from acquisition to statistical and machine learning techniques for PTSD diagnosis. <italic>Methods:</i> Using the PRISMA-ScR protocol, studies published between 2013 and 2024 were reviewed from databases including Scopus, Web of Science, and PubMed. A total of 73 studies were analyzed: 52 on diagnosis, 8 on differentiation, and 15 on therapy. <italic>Results:</i> EEG Bands and Event-Related Potentials (ERP) were the dominant techniques. The Alpha band demonstrated strong performance in diagnosis and therapy. LPP ERP was most effective for diagnosis, and P300 for differentiation. Supervised SVM models achieved the highest accuracy in diagnosis (ACC = 0.997), differentiation (ACC = 0.841), and psychotherapy (ACC = 0.78). Random Forest multimodal models integrating EEG with other modalities (e.g., ECG, GSR, Speech) achieved ACC = 0.993. Unsupervised approach is employed to cluster patients to identify PTSD subtypes or to differentiate PTSD from other mental disorders. Veterans and combatants were the primary study population, and only three studies reported open datasets. <italic>Conclusions:</i> EEG-based methods hold promise as objective tools for PTSD diagnosis and therapy. The review identified limitations in the use of ERP, sleep characterization and full-band EEG. Broader datasets representing diverse populations are essential to mitigate bias and facilitate robust inter-model comparisons. Future research should focus on deep learning, adaptive signal decomposition, and multimodal approaches.","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":"6 ","pages":"332-344"},"PeriodicalIF":2.7,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10874198","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143706641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
2024 Index IEEE Open Journal of Engineering in Medicine and Biology Vol. 5 IEEE开放医学与生物工程学报第5卷
IF 2.7
IEEE Open Journal of Engineering in Medicine and Biology Pub Date : 2025-02-04 DOI: 10.1109/OJEMB.2025.3538256
{"title":"2024 Index IEEE Open Journal of Engineering in Medicine and Biology Vol. 5","authors":"","doi":"10.1109/OJEMB.2025.3538256","DOIUrl":"https://doi.org/10.1109/OJEMB.2025.3538256","url":null,"abstract":"","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":"5 ","pages":"885-909"},"PeriodicalIF":2.7,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10870393","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143106067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
BandFocusNet: A Lightweight Model for Motor Imagery Classification of a Supernumerary Thumb in Virtual Reality BandFocusNet:虚拟现实中多余拇指运动图像分类的轻量级模型
IF 2.7
IEEE Open Journal of Engineering in Medicine and Biology Pub Date : 2025-02-03 DOI: 10.1109/OJEMB.2025.3537760
Haneen Alsuradi;Joseph Hong;Alireza Sarmadi;Robert Volcic;Hanan Salam;S. Farokh Atashzar;Farshad Khorrami;Mohamad Eid
{"title":"BandFocusNet: A Lightweight Model for Motor Imagery Classification of a Supernumerary Thumb in Virtual Reality","authors":"Haneen Alsuradi;Joseph Hong;Alireza Sarmadi;Robert Volcic;Hanan Salam;S. Farokh Atashzar;Farshad Khorrami;Mohamad Eid","doi":"10.1109/OJEMB.2025.3537760","DOIUrl":"https://doi.org/10.1109/OJEMB.2025.3537760","url":null,"abstract":"<italic>Objective:</i> Human movement augmentation through supernumerary effectors is an emerging field of research. However, controlling these effectors remains challenging due to issues with agency, control, and synchronizing movements with natural limbs. A promising control strategy for supernumerary effectors involves utilizing electroencephalography (EEG) through motor imagery (MI) functions. In this work, we investigate whether MI activity associated with a supernumerary effector could be reliably differentiated from that of a natural one, thus addressing the concern of concurrency. Twenty subjects were recruited to participate in a two-fold experiment in which they observed movements of natural and supernumerary thumbs, then engaged in MI of the observed movements, conducted in a virtual reality setting. <italic>Results:</i> A lightweight deep-learning model that accounts for the temporal, spatial and spectral nature of the EEG data is proposed and called BandFocusNet, achieving an average classification accuracy of 70.9% using the leave-one-subject-out cross validation method. The trustworthiness of the model is examined through explainability analysis, and influential regions-of-interests are cross-validated through event-related-spectral-perturbation (ERSPs) analysis. Explainability results showed the importance of the right and left frontal cortical regions, and ERSPs analysis showed an increase in the delta and theta powers in these regions during the MI of the natural thumb but not during the MI of the supernumerary thumb. <italic>Conclusion:</i> Evidence in the literature indicates that such activation is observed during the MI of natural effectors, and its absence could be interpreted as a lack of embodiment of the supernumerary thumb.","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":"6 ","pages":"305-311"},"PeriodicalIF":2.7,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10869342","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143512945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enabling Model-Based Design for Real-Time Spike Detection 实现基于模型的实时尖峰检测设计
IF 2.7
IEEE Open Journal of Engineering in Medicine and Biology Pub Date : 2025-02-03 DOI: 10.1109/OJEMB.2025.3537768
Mattia Di Florio;Yannick Bornat;Marta Carè;Vinicius Rosa Cota;Stefano Buccelli;Michela Chiappalone
{"title":"Enabling Model-Based Design for Real-Time Spike Detection","authors":"Mattia Di Florio;Yannick Bornat;Marta Carè;Vinicius Rosa Cota;Stefano Buccelli;Michela Chiappalone","doi":"10.1109/OJEMB.2025.3537768","DOIUrl":"https://doi.org/10.1109/OJEMB.2025.3537768","url":null,"abstract":"<italic>Goal</i>: This study addresses the inherent difficulties in the creation of neuroengineering devices for real-time neural signal processing, a task typically characterized by intricate and technically demanding processes. Beneath the substantial hardware advancements in neurotechnology, there is often rather complex low-level code that poses challenges in terms of development, documentation, and long-term maintenance. <italic>Methods</i>: We adopted an alternative strategy centered on Model-Based Design (MBD) to simplify the creation of neuroengineering systems and reduce the entry barriers. MBD offers distinct advantages by streamlining the design workflow, from modelling to implementation, thus facilitating the development of intricate systems. A spike detection algorithm has been implemented on a commercially available system based on a Field-Programmable Gate Array (FPGA) that combines neural probe electronics with configurable integrated circuit. The entire process of data handling and data processing was performed within the Simulink environment, with subsequent generation of hardware description language (HDL) code tailored to the FPGA hardware. <italic>Results</i>: The validation was conducted through in vivo experiments involving six animals and demonstrated the capability of our MBD-based real time processing (latency <=>Conclusions</i>: This methodology can have a significant impact in the development of neuroengineering systems by speeding up the prototyping of various system architectures. We have made all project code files open source, thereby providing free access to fellow scientists interested in the development of neuroengineering systems.","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":"6 ","pages":"312-319"},"PeriodicalIF":2.7,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10870096","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143583136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultrasound Segmentation Using Semi-Supervised Learning: Application in Point-of-Care Sarcopenia Assessment 使用半监督学习的超声分割:在即时肌少症评估中的应用
IF 2.7
IEEE Open Journal of Engineering in Medicine and Biology Pub Date : 2025-01-31 DOI: 10.1109/OJEMB.2025.3537560
Hamza Rasaee;Maryia Samuel;Bahareh Behboodi;Jonathan Afilalo;Hassan Rivaz
{"title":"Ultrasound Segmentation Using Semi-Supervised Learning: Application in Point-of-Care Sarcopenia Assessment","authors":"Hamza Rasaee;Maryia Samuel;Bahareh Behboodi;Jonathan Afilalo;Hassan Rivaz","doi":"10.1109/OJEMB.2025.3537560","DOIUrl":"https://doi.org/10.1109/OJEMB.2025.3537560","url":null,"abstract":"Ultrasound imaging is crucial in medical diagnostics, offering real-time visualization of internal anatomical structures. However, accurate automatic segmentation of ultrasound images remains challenging, particularly in scenarios with limited labeled data. In this paper, we propose a semi-supervised learning approach for ultrasound image segmentation, leveraging the statistics of data in unlabeled images to enhance segmentation accuracy. Our method builds upon the encoder-decoder architecture and incorporates innovative semi-supervised learning techniques based on contrastive learning. We have collected ultrasound images from 80 patients and 34 healthy volunteers, focusing on applications in sarcopenia assessment and emergency response scenarios. We demonstrate the effectiveness of our approach through extensive experiments on expert segmentations in this dataset.Our results demonstrate the superior performance of the proposed method across various training data splits (i.e., 1%, 5%, 10%, 20%, 30%, and 100%). While U-NET performed the best with 100% of the training data (i.e., 154 annotated images), the proposed method achieved comparable performance with only 10% of the data (i.e., 16 annotated images). Furthermore, statistical analysis confirmed that our method significantly outperforms existing models, including U-NET, CCT, and UniMatch, in most scenarios (i.e., training set splits). These findings highlight the robustness and efficiency of the proposed method, especially in environments where labeled data is scarce","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":"6 ","pages":"322-331"},"PeriodicalIF":2.7,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10869339","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143706642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Low-Rank Adaptation of Pre-Trained Large Vision Models for Improved Lung Nodule Malignancy Classification 预训练大视觉模型的低秩自适应改进肺结节恶性分类
IF 2.7
IEEE Open Journal of Engineering in Medicine and Biology Pub Date : 2025-01-16 DOI: 10.1109/OJEMB.2025.3530841
Benjamin P. Veasey;Amir A. Amini
{"title":"Low-Rank Adaptation of Pre-Trained Large Vision Models for Improved Lung Nodule Malignancy Classification","authors":"Benjamin P. Veasey;Amir A. Amini","doi":"10.1109/OJEMB.2025.3530841","DOIUrl":"https://doi.org/10.1109/OJEMB.2025.3530841","url":null,"abstract":"<italic>Goal:</i> This paper investigates using Low-Rank Adaptation (LoRA) to adapt large vision models (LVMs) pretrained with self-supervised learning (SSL) for lung nodule malignancy classification. Inspired by LoRA's success in the field of Natural Language Processing, we hypothesized that such an adaptation technique can significantly improve classification performance, parameter efficiency, and training speed for the novel application of lung image cancer diagnostic. <italic>Methods:</i> Utilizing two comprehensive lung nodule datasets, NLSTx and LIDC, which together encompass a diverse array of biopsy- and radiologist-confirmed lung CT scans, our rigorous experimental setup demonstrates that LoRA-adapted models markedly surpass traditional fine-tuning methods. <italic>Results:</i> The best LoRA-adapted model achieved a 3% increase in ROC AUC over the state-of-the-art model, utilized 89.9% fewer parameters, and reduced training times by 36.5%. <italic>Conclusions:</i> Integrating LoRA with out-of-domain pretrained LVMs offers a promising avenue for enhancing performance of lung nodule malignancy classification. The annotations for the NLSTx dataset are also released with this paper on GitHub at <uri>https://github.com/benVZ/NLSTx</uri>.","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":"6 ","pages":"296-304"},"PeriodicalIF":2.7,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10843806","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143361179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Review on Deep Learning for Quality of Life Assessment Through the Use of Wearable Data 基于可穿戴数据的深度学习生活质量评估研究综述
IF 2.7
IEEE Open Journal of Engineering in Medicine and Biology Pub Date : 2025-01-14 DOI: 10.1109/OJEMB.2025.3526457
Vasileios Skaramagkas;Ioannis Kyprakis;Georgia S. Karanasiou;Dimitris I. Fotiadis;Manolis Tsiknakis
{"title":"A Review on Deep Learning for Quality of Life Assessment Through the Use of Wearable Data","authors":"Vasileios Skaramagkas;Ioannis Kyprakis;Georgia S. Karanasiou;Dimitris I. Fotiadis;Manolis Tsiknakis","doi":"10.1109/OJEMB.2025.3526457","DOIUrl":"https://doi.org/10.1109/OJEMB.2025.3526457","url":null,"abstract":"Quality of Life (QoL) assessment has evolved over time, encompassing diverse aspects of human existence beyond just health. This paper presents a comprehensive review of the integration of Deep Learning (DL) techniques in QoL assessment, focusing on the analysis of wearable data. QoL, as defined by the World Health Organisation, encompasses physical, mental, and social well-being, making it a multifaceted concept. Traditional QoL assessment methods, often reliant on subjective reports or informal questioning, face challenges in quantification and standardization. To address these challenges, DL, a branch of machine learning inspired by the human brain, has emerged as a promising tool. DL models can analyze vast and complex datasets, including patient-reported outcomes, medical images, and physiological signals, enabling a deeper understanding of factors influencing an individual's QoL. Notably, wearable sensory devices have gained prominence, offering real-time data on vital signs and enabling remote healthcare monitoring. This review critically examines DL's role in QoL assessment through the use of wearable data, with particular emphasis on the subdomains of physical and psychological well-being. By synthesizing current research and identifying knowledge gaps, this review provides valuable insights for researchers, clinicians, and policymakers aiming to enhance QoL assessment with DL. Ultimately, the paper contributes to the adoption of advanced technologies to improve the well-being and QoL of individuals from diverse backgrounds.","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":"6 ","pages":"261-268"},"PeriodicalIF":2.7,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10841411","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143105936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信