Advances in Electroencephalography for Post-Traumatic Stress Disorder Identification: A Scoping Review

IF 2.7 Q3 ENGINEERING, BIOMEDICAL
José A. Salazar-Castro;Diego H. Peluffo-Ordóñez;Diego M. López
{"title":"Advances in Electroencephalography for Post-Traumatic Stress Disorder Identification: A Scoping Review","authors":"José A. Salazar-Castro;Diego H. Peluffo-Ordóñez;Diego M. López","doi":"10.1109/OJEMB.2025.3538498","DOIUrl":null,"url":null,"abstract":"<italic>Background:</i> Post-traumatic stress disorder (PTSD) is a psychophysiological condition caused by traumatic experiences. Its diagnosis typically relies on subjective tools like clinical interviews and self-reports. <italic>Objectives:</i> This scoping review analyzes computational methods using EEG signal processing for PTSD diagnosis, differentiation, and therapy. It provides a comprehensive overview of the entire EEG analysis pipeline, from acquisition to statistical and machine learning techniques for PTSD diagnosis. <italic>Methods:</i> Using the PRISMA-ScR protocol, studies published between 2013 and 2024 were reviewed from databases including Scopus, Web of Science, and PubMed. A total of 73 studies were analyzed: 52 on diagnosis, 8 on differentiation, and 15 on therapy. <italic>Results:</i> EEG Bands and Event-Related Potentials (ERP) were the dominant techniques. The Alpha band demonstrated strong performance in diagnosis and therapy. LPP ERP was most effective for diagnosis, and P300 for differentiation. Supervised SVM models achieved the highest accuracy in diagnosis (ACC = 0.997), differentiation (ACC = 0.841), and psychotherapy (ACC = 0.78). Random Forest multimodal models integrating EEG with other modalities (e.g., ECG, GSR, Speech) achieved ACC = 0.993. Unsupervised approach is employed to cluster patients to identify PTSD subtypes or to differentiate PTSD from other mental disorders. Veterans and combatants were the primary study population, and only three studies reported open datasets. <italic>Conclusions:</i> EEG-based methods hold promise as objective tools for PTSD diagnosis and therapy. The review identified limitations in the use of ERP, sleep characterization and full-band EEG. Broader datasets representing diverse populations are essential to mitigate bias and facilitate robust inter-model comparisons. Future research should focus on deep learning, adaptive signal decomposition, and multimodal approaches.","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":"6 ","pages":"332-344"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10874198","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Engineering in Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10874198/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Post-traumatic stress disorder (PTSD) is a psychophysiological condition caused by traumatic experiences. Its diagnosis typically relies on subjective tools like clinical interviews and self-reports. Objectives: This scoping review analyzes computational methods using EEG signal processing for PTSD diagnosis, differentiation, and therapy. It provides a comprehensive overview of the entire EEG analysis pipeline, from acquisition to statistical and machine learning techniques for PTSD diagnosis. Methods: Using the PRISMA-ScR protocol, studies published between 2013 and 2024 were reviewed from databases including Scopus, Web of Science, and PubMed. A total of 73 studies were analyzed: 52 on diagnosis, 8 on differentiation, and 15 on therapy. Results: EEG Bands and Event-Related Potentials (ERP) were the dominant techniques. The Alpha band demonstrated strong performance in diagnosis and therapy. LPP ERP was most effective for diagnosis, and P300 for differentiation. Supervised SVM models achieved the highest accuracy in diagnosis (ACC = 0.997), differentiation (ACC = 0.841), and psychotherapy (ACC = 0.78). Random Forest multimodal models integrating EEG with other modalities (e.g., ECG, GSR, Speech) achieved ACC = 0.993. Unsupervised approach is employed to cluster patients to identify PTSD subtypes or to differentiate PTSD from other mental disorders. Veterans and combatants were the primary study population, and only three studies reported open datasets. Conclusions: EEG-based methods hold promise as objective tools for PTSD diagnosis and therapy. The review identified limitations in the use of ERP, sleep characterization and full-band EEG. Broader datasets representing diverse populations are essential to mitigate bias and facilitate robust inter-model comparisons. Future research should focus on deep learning, adaptive signal decomposition, and multimodal approaches.
脑电诊断创伤后应激障碍的进展:范围综述
背景:创伤后应激障碍(PTSD)是由创伤经历引起的一种心理生理状况。其诊断通常依赖于临床访谈和自我报告等主观工具。目的:本综述分析了脑电图信号处理在PTSD诊断、鉴别和治疗中的计算方法。它提供了整个脑电图分析管道的全面概述,从采集到PTSD诊断的统计和机器学习技术。方法:采用PRISMA-ScR协议,从Scopus、Web of Science和PubMed等数据库中检索2013 - 2024年间发表的研究。共分析73项研究:诊断52项,鉴别8项,治疗15项。结果:脑电图带和事件相关电位(ERP)是主要技术。Alpha波段在诊断和治疗方面表现出较强的效能。LPP ERP对诊断最有效,P300对鉴别最有效。监督支持向量机模型在诊断(ACC = 0.997)、鉴别(ACC = 0.841)和心理治疗(ACC = 0.78)方面的准确率最高。结合EEG与其他模态(如ECG、GSR、Speech)的随机森林多模态模型的ACC = 0.993。采用无监督方法对患者进行聚类,以确定PTSD亚型或将PTSD与其他精神障碍区分开来。退伍军人和战斗人员是主要的研究人群,只有三个研究报告了开放的数据集。结论:基于脑电图的方法有望成为PTSD诊断和治疗的客观工具。该综述确定了ERP、睡眠表征和全波段脑电图的局限性。代表不同人群的更广泛的数据集对于减轻偏见和促进稳健的模型间比较至关重要。未来的研究应该集中在深度学习、自适应信号分解和多模态方法上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.50
自引率
3.40%
发文量
20
审稿时长
10 weeks
期刊介绍: The IEEE Open Journal of Engineering in Medicine and Biology (IEEE OJEMB) is dedicated to serving the community of innovators in medicine, technology, and the sciences, with the core goal of advancing the highest-quality interdisciplinary research between these disciplines. The journal firmly believes that the future of medicine depends on close collaboration between biology and technology, and that fostering interaction between these fields is an important way to advance key discoveries that can improve clinical care.IEEE OJEMB is a gold open access journal in which the authors retain the copyright to their papers and readers have free access to the full text and PDFs on the IEEE Xplore® Digital Library. However, authors are required to pay an article processing fee at the time their paper is accepted for publication, using to cover the cost of publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信