José A. Salazar-Castro;Diego H. Peluffo-Ordóñez;Diego M. López
{"title":"Advances in Electroencephalography for Post-Traumatic Stress Disorder Identification: A Scoping Review","authors":"José A. Salazar-Castro;Diego H. Peluffo-Ordóñez;Diego M. López","doi":"10.1109/OJEMB.2025.3538498","DOIUrl":null,"url":null,"abstract":"<italic>Background:</i> Post-traumatic stress disorder (PTSD) is a psychophysiological condition caused by traumatic experiences. Its diagnosis typically relies on subjective tools like clinical interviews and self-reports. <italic>Objectives:</i> This scoping review analyzes computational methods using EEG signal processing for PTSD diagnosis, differentiation, and therapy. It provides a comprehensive overview of the entire EEG analysis pipeline, from acquisition to statistical and machine learning techniques for PTSD diagnosis. <italic>Methods:</i> Using the PRISMA-ScR protocol, studies published between 2013 and 2024 were reviewed from databases including Scopus, Web of Science, and PubMed. A total of 73 studies were analyzed: 52 on diagnosis, 8 on differentiation, and 15 on therapy. <italic>Results:</i> EEG Bands and Event-Related Potentials (ERP) were the dominant techniques. The Alpha band demonstrated strong performance in diagnosis and therapy. LPP ERP was most effective for diagnosis, and P300 for differentiation. Supervised SVM models achieved the highest accuracy in diagnosis (ACC = 0.997), differentiation (ACC = 0.841), and psychotherapy (ACC = 0.78). Random Forest multimodal models integrating EEG with other modalities (e.g., ECG, GSR, Speech) achieved ACC = 0.993. Unsupervised approach is employed to cluster patients to identify PTSD subtypes or to differentiate PTSD from other mental disorders. Veterans and combatants were the primary study population, and only three studies reported open datasets. <italic>Conclusions:</i> EEG-based methods hold promise as objective tools for PTSD diagnosis and therapy. The review identified limitations in the use of ERP, sleep characterization and full-band EEG. Broader datasets representing diverse populations are essential to mitigate bias and facilitate robust inter-model comparisons. Future research should focus on deep learning, adaptive signal decomposition, and multimodal approaches.","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":"6 ","pages":"332-344"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10874198","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Engineering in Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10874198/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Post-traumatic stress disorder (PTSD) is a psychophysiological condition caused by traumatic experiences. Its diagnosis typically relies on subjective tools like clinical interviews and self-reports. Objectives: This scoping review analyzes computational methods using EEG signal processing for PTSD diagnosis, differentiation, and therapy. It provides a comprehensive overview of the entire EEG analysis pipeline, from acquisition to statistical and machine learning techniques for PTSD diagnosis. Methods: Using the PRISMA-ScR protocol, studies published between 2013 and 2024 were reviewed from databases including Scopus, Web of Science, and PubMed. A total of 73 studies were analyzed: 52 on diagnosis, 8 on differentiation, and 15 on therapy. Results: EEG Bands and Event-Related Potentials (ERP) were the dominant techniques. The Alpha band demonstrated strong performance in diagnosis and therapy. LPP ERP was most effective for diagnosis, and P300 for differentiation. Supervised SVM models achieved the highest accuracy in diagnosis (ACC = 0.997), differentiation (ACC = 0.841), and psychotherapy (ACC = 0.78). Random Forest multimodal models integrating EEG with other modalities (e.g., ECG, GSR, Speech) achieved ACC = 0.993. Unsupervised approach is employed to cluster patients to identify PTSD subtypes or to differentiate PTSD from other mental disorders. Veterans and combatants were the primary study population, and only three studies reported open datasets. Conclusions: EEG-based methods hold promise as objective tools for PTSD diagnosis and therapy. The review identified limitations in the use of ERP, sleep characterization and full-band EEG. Broader datasets representing diverse populations are essential to mitigate bias and facilitate robust inter-model comparisons. Future research should focus on deep learning, adaptive signal decomposition, and multimodal approaches.
期刊介绍:
The IEEE Open Journal of Engineering in Medicine and Biology (IEEE OJEMB) is dedicated to serving the community of innovators in medicine, technology, and the sciences, with the core goal of advancing the highest-quality interdisciplinary research between these disciplines. The journal firmly believes that the future of medicine depends on close collaboration between biology and technology, and that fostering interaction between these fields is an important way to advance key discoveries that can improve clinical care.IEEE OJEMB is a gold open access journal in which the authors retain the copyright to their papers and readers have free access to the full text and PDFs on the IEEE Xplore® Digital Library. However, authors are required to pay an article processing fee at the time their paper is accepted for publication, using to cover the cost of publication.