BandFocusNet: A Lightweight Model for Motor Imagery Classification of a Supernumerary Thumb in Virtual Reality

IF 2.7 Q3 ENGINEERING, BIOMEDICAL
Haneen Alsuradi;Joseph Hong;Alireza Sarmadi;Robert Volcic;Hanan Salam;S. Farokh Atashzar;Farshad Khorrami;Mohamad Eid
{"title":"BandFocusNet: A Lightweight Model for Motor Imagery Classification of a Supernumerary Thumb in Virtual Reality","authors":"Haneen Alsuradi;Joseph Hong;Alireza Sarmadi;Robert Volcic;Hanan Salam;S. Farokh Atashzar;Farshad Khorrami;Mohamad Eid","doi":"10.1109/OJEMB.2025.3537760","DOIUrl":null,"url":null,"abstract":"<italic>Objective:</i> Human movement augmentation through supernumerary effectors is an emerging field of research. However, controlling these effectors remains challenging due to issues with agency, control, and synchronizing movements with natural limbs. A promising control strategy for supernumerary effectors involves utilizing electroencephalography (EEG) through motor imagery (MI) functions. In this work, we investigate whether MI activity associated with a supernumerary effector could be reliably differentiated from that of a natural one, thus addressing the concern of concurrency. Twenty subjects were recruited to participate in a two-fold experiment in which they observed movements of natural and supernumerary thumbs, then engaged in MI of the observed movements, conducted in a virtual reality setting. <italic>Results:</i> A lightweight deep-learning model that accounts for the temporal, spatial and spectral nature of the EEG data is proposed and called BandFocusNet, achieving an average classification accuracy of 70.9% using the leave-one-subject-out cross validation method. The trustworthiness of the model is examined through explainability analysis, and influential regions-of-interests are cross-validated through event-related-spectral-perturbation (ERSPs) analysis. Explainability results showed the importance of the right and left frontal cortical regions, and ERSPs analysis showed an increase in the delta and theta powers in these regions during the MI of the natural thumb but not during the MI of the supernumerary thumb. <italic>Conclusion:</i> Evidence in the literature indicates that such activation is observed during the MI of natural effectors, and its absence could be interpreted as a lack of embodiment of the supernumerary thumb.","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":"6 ","pages":"305-311"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10869342","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Engineering in Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10869342/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Human movement augmentation through supernumerary effectors is an emerging field of research. However, controlling these effectors remains challenging due to issues with agency, control, and synchronizing movements with natural limbs. A promising control strategy for supernumerary effectors involves utilizing electroencephalography (EEG) through motor imagery (MI) functions. In this work, we investigate whether MI activity associated with a supernumerary effector could be reliably differentiated from that of a natural one, thus addressing the concern of concurrency. Twenty subjects were recruited to participate in a two-fold experiment in which they observed movements of natural and supernumerary thumbs, then engaged in MI of the observed movements, conducted in a virtual reality setting. Results: A lightweight deep-learning model that accounts for the temporal, spatial and spectral nature of the EEG data is proposed and called BandFocusNet, achieving an average classification accuracy of 70.9% using the leave-one-subject-out cross validation method. The trustworthiness of the model is examined through explainability analysis, and influential regions-of-interests are cross-validated through event-related-spectral-perturbation (ERSPs) analysis. Explainability results showed the importance of the right and left frontal cortical regions, and ERSPs analysis showed an increase in the delta and theta powers in these regions during the MI of the natural thumb but not during the MI of the supernumerary thumb. Conclusion: Evidence in the literature indicates that such activation is observed during the MI of natural effectors, and its absence could be interpreted as a lack of embodiment of the supernumerary thumb.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.50
自引率
3.40%
发文量
20
审稿时长
10 weeks
期刊介绍: The IEEE Open Journal of Engineering in Medicine and Biology (IEEE OJEMB) is dedicated to serving the community of innovators in medicine, technology, and the sciences, with the core goal of advancing the highest-quality interdisciplinary research between these disciplines. The journal firmly believes that the future of medicine depends on close collaboration between biology and technology, and that fostering interaction between these fields is an important way to advance key discoveries that can improve clinical care.IEEE OJEMB is a gold open access journal in which the authors retain the copyright to their papers and readers have free access to the full text and PDFs on the IEEE Xplore® Digital Library. However, authors are required to pay an article processing fee at the time their paper is accepted for publication, using to cover the cost of publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信