NDL-Net:从胸部x光片诊断新生儿呼吸窘迫综合征的混合深度学习框架

IF 2.7 Q3 ENGINEERING, BIOMEDICAL
Malik Muhammad Arslan;Xiaodong Yang;Nan Zhao;Lei Guan;Tao Cui;Daniyal Haider
{"title":"NDL-Net:从胸部x光片诊断新生儿呼吸窘迫综合征的混合深度学习框架","authors":"Malik Muhammad Arslan;Xiaodong Yang;Nan Zhao;Lei Guan;Tao Cui;Daniyal Haider","doi":"10.1109/OJEMB.2025.3548613","DOIUrl":null,"url":null,"abstract":"<italic>Objective:</i> Neonatal Respiratory Distress Syndrome (NRDS) poses a significant threat to newborn health, necessitating timely and accurate diagnosis. This study introduces NDL-Net, an innovative hybrid deep learning framework designed to diagnose NRDS from chest X-rays (CXR). <italic>Results:</i> The architecture combines MobileNetV3 Large for efficient image processing and ResNet50 for detecting complex patterns essential for NRDS identification. Additionally, a Long Short-Term Memory (LSTM) layer analyzes temporal variations in imaging data, enhancing predictive accuracy. Extensive evaluation on neonatal CXR datasets demonstrated NDL-Net's high diagnostic performance, achieving 98.09% accuracy, 97.45% precision, 98.73% sensitivity, 98.08% F1-score, and 98.73% specificity. The model's low false negative and false positive rates underscore its superior diagnostic capabilities. <italic>Conclusion:</i> NDL-Net represents a significant advancement in medical diagnostics, improving neonatal care through early detection and management of NRDS.","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":"6 ","pages":"407-412"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10914519","citationCount":"0","resultStr":"{\"title\":\"NDL-Net: A Hybrid Deep Learning Framework for Diagnosing Neonatal Respiratory Distress Syndrome From Chest X-Rays\",\"authors\":\"Malik Muhammad Arslan;Xiaodong Yang;Nan Zhao;Lei Guan;Tao Cui;Daniyal Haider\",\"doi\":\"10.1109/OJEMB.2025.3548613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<italic>Objective:</i> Neonatal Respiratory Distress Syndrome (NRDS) poses a significant threat to newborn health, necessitating timely and accurate diagnosis. This study introduces NDL-Net, an innovative hybrid deep learning framework designed to diagnose NRDS from chest X-rays (CXR). <italic>Results:</i> The architecture combines MobileNetV3 Large for efficient image processing and ResNet50 for detecting complex patterns essential for NRDS identification. Additionally, a Long Short-Term Memory (LSTM) layer analyzes temporal variations in imaging data, enhancing predictive accuracy. Extensive evaluation on neonatal CXR datasets demonstrated NDL-Net's high diagnostic performance, achieving 98.09% accuracy, 97.45% precision, 98.73% sensitivity, 98.08% F1-score, and 98.73% specificity. The model's low false negative and false positive rates underscore its superior diagnostic capabilities. <italic>Conclusion:</i> NDL-Net represents a significant advancement in medical diagnostics, improving neonatal care through early detection and management of NRDS.\",\"PeriodicalId\":33825,\"journal\":{\"name\":\"IEEE Open Journal of Engineering in Medicine and Biology\",\"volume\":\"6 \",\"pages\":\"407-412\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10914519\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Engineering in Medicine and Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10914519/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Engineering in Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10914519/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

目的:新生儿呼吸窘迫综合征(NRDS)严重威胁新生儿健康,需要及时准确的诊断。本研究介绍了NDL-Net,这是一种创新的混合深度学习框架,旨在从胸部x光片(CXR)诊断NRDS。结果:该体系结构结合了用于高效图像处理的MobileNetV3 Large和用于检测NRDS识别所需的复杂模式的ResNet50。此外,长短期记忆(LSTM)层分析成像数据的时间变化,提高预测准确性。对新生儿CXR数据集的广泛评估表明,NDL-Net具有较高的诊断性能,准确率为98.09%,精密度为97.45%,灵敏度为98.73%,f1评分为98.08%,特异性为98.73%。该模型的低假阴性和假阳性率强调了其优越的诊断能力。结论:NDL-Net代表了医学诊断的重大进步,通过NRDS的早期发现和管理改善了新生儿护理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NDL-Net: A Hybrid Deep Learning Framework for Diagnosing Neonatal Respiratory Distress Syndrome From Chest X-Rays
Objective: Neonatal Respiratory Distress Syndrome (NRDS) poses a significant threat to newborn health, necessitating timely and accurate diagnosis. This study introduces NDL-Net, an innovative hybrid deep learning framework designed to diagnose NRDS from chest X-rays (CXR). Results: The architecture combines MobileNetV3 Large for efficient image processing and ResNet50 for detecting complex patterns essential for NRDS identification. Additionally, a Long Short-Term Memory (LSTM) layer analyzes temporal variations in imaging data, enhancing predictive accuracy. Extensive evaluation on neonatal CXR datasets demonstrated NDL-Net's high diagnostic performance, achieving 98.09% accuracy, 97.45% precision, 98.73% sensitivity, 98.08% F1-score, and 98.73% specificity. The model's low false negative and false positive rates underscore its superior diagnostic capabilities. Conclusion: NDL-Net represents a significant advancement in medical diagnostics, improving neonatal care through early detection and management of NRDS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.50
自引率
3.40%
发文量
20
审稿时长
10 weeks
期刊介绍: The IEEE Open Journal of Engineering in Medicine and Biology (IEEE OJEMB) is dedicated to serving the community of innovators in medicine, technology, and the sciences, with the core goal of advancing the highest-quality interdisciplinary research between these disciplines. The journal firmly believes that the future of medicine depends on close collaboration between biology and technology, and that fostering interaction between these fields is an important way to advance key discoveries that can improve clinical care.IEEE OJEMB is a gold open access journal in which the authors retain the copyright to their papers and readers have free access to the full text and PDFs on the IEEE Xplore® Digital Library. However, authors are required to pay an article processing fee at the time their paper is accepted for publication, using to cover the cost of publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信