BandFocusNet:虚拟现实中多余拇指运动图像分类的轻量级模型

IF 2.7 Q3 ENGINEERING, BIOMEDICAL
Haneen Alsuradi;Joseph Hong;Alireza Sarmadi;Robert Volcic;Hanan Salam;S. Farokh Atashzar;Farshad Khorrami;Mohamad Eid
{"title":"BandFocusNet:虚拟现实中多余拇指运动图像分类的轻量级模型","authors":"Haneen Alsuradi;Joseph Hong;Alireza Sarmadi;Robert Volcic;Hanan Salam;S. Farokh Atashzar;Farshad Khorrami;Mohamad Eid","doi":"10.1109/OJEMB.2025.3537760","DOIUrl":null,"url":null,"abstract":"<italic>Objective:</i> Human movement augmentation through supernumerary effectors is an emerging field of research. However, controlling these effectors remains challenging due to issues with agency, control, and synchronizing movements with natural limbs. A promising control strategy for supernumerary effectors involves utilizing electroencephalography (EEG) through motor imagery (MI) functions. In this work, we investigate whether MI activity associated with a supernumerary effector could be reliably differentiated from that of a natural one, thus addressing the concern of concurrency. Twenty subjects were recruited to participate in a two-fold experiment in which they observed movements of natural and supernumerary thumbs, then engaged in MI of the observed movements, conducted in a virtual reality setting. <italic>Results:</i> A lightweight deep-learning model that accounts for the temporal, spatial and spectral nature of the EEG data is proposed and called BandFocusNet, achieving an average classification accuracy of 70.9% using the leave-one-subject-out cross validation method. The trustworthiness of the model is examined through explainability analysis, and influential regions-of-interests are cross-validated through event-related-spectral-perturbation (ERSPs) analysis. Explainability results showed the importance of the right and left frontal cortical regions, and ERSPs analysis showed an increase in the delta and theta powers in these regions during the MI of the natural thumb but not during the MI of the supernumerary thumb. <italic>Conclusion:</i> Evidence in the literature indicates that such activation is observed during the MI of natural effectors, and its absence could be interpreted as a lack of embodiment of the supernumerary thumb.","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":"6 ","pages":"305-311"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10869342","citationCount":"0","resultStr":"{\"title\":\"BandFocusNet: A Lightweight Model for Motor Imagery Classification of a Supernumerary Thumb in Virtual Reality\",\"authors\":\"Haneen Alsuradi;Joseph Hong;Alireza Sarmadi;Robert Volcic;Hanan Salam;S. Farokh Atashzar;Farshad Khorrami;Mohamad Eid\",\"doi\":\"10.1109/OJEMB.2025.3537760\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<italic>Objective:</i> Human movement augmentation through supernumerary effectors is an emerging field of research. However, controlling these effectors remains challenging due to issues with agency, control, and synchronizing movements with natural limbs. A promising control strategy for supernumerary effectors involves utilizing electroencephalography (EEG) through motor imagery (MI) functions. In this work, we investigate whether MI activity associated with a supernumerary effector could be reliably differentiated from that of a natural one, thus addressing the concern of concurrency. Twenty subjects were recruited to participate in a two-fold experiment in which they observed movements of natural and supernumerary thumbs, then engaged in MI of the observed movements, conducted in a virtual reality setting. <italic>Results:</i> A lightweight deep-learning model that accounts for the temporal, spatial and spectral nature of the EEG data is proposed and called BandFocusNet, achieving an average classification accuracy of 70.9% using the leave-one-subject-out cross validation method. The trustworthiness of the model is examined through explainability analysis, and influential regions-of-interests are cross-validated through event-related-spectral-perturbation (ERSPs) analysis. Explainability results showed the importance of the right and left frontal cortical regions, and ERSPs analysis showed an increase in the delta and theta powers in these regions during the MI of the natural thumb but not during the MI of the supernumerary thumb. <italic>Conclusion:</i> Evidence in the literature indicates that such activation is observed during the MI of natural effectors, and its absence could be interpreted as a lack of embodiment of the supernumerary thumb.\",\"PeriodicalId\":33825,\"journal\":{\"name\":\"IEEE Open Journal of Engineering in Medicine and Biology\",\"volume\":\"6 \",\"pages\":\"305-311\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10869342\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Engineering in Medicine and Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10869342/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Engineering in Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10869342/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

目的:利用多余效应器增强人体运动是一个新兴的研究领域。然而,由于代理、控制和与自然肢体同步运动的问题,控制这些效应器仍然具有挑战性。一种很有前途的控制策略是利用脑电图(EEG)通过运动图像(MI)功能来控制多余的效应器。在这项工作中,我们研究了与额外效应相关的MI活动是否可以可靠地与自然效应相区分,从而解决了并发性的问题。20名受试者被招募来参加一个双重实验,在这个实验中,他们观察自然拇指和多余拇指的运动,然后在虚拟现实环境中对观察到的运动进行MI。结果:提出了一种轻量级的深度学习模型,该模型考虑了脑电数据的时间、空间和频谱性质,称为BandFocusNet,使用留一个受试者的交叉验证方法实现了70.9%的平均分类准确率。通过可解释性分析检验模型的可信度,并通过事件相关光谱摄动(ERSPs)分析交叉验证有影响的利益区域。可解释性结果显示了左右额叶皮层区域的重要性,ERSPs分析显示,这些区域的δ和θ功率在自然拇指的MI期间增加,而在多余拇指的MI期间没有增加。结论:文献证据表明,在自然效应器的心肌梗死过程中观察到这种激活,其缺失可以解释为多余拇指缺乏体现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BandFocusNet: A Lightweight Model for Motor Imagery Classification of a Supernumerary Thumb in Virtual Reality
Objective: Human movement augmentation through supernumerary effectors is an emerging field of research. However, controlling these effectors remains challenging due to issues with agency, control, and synchronizing movements with natural limbs. A promising control strategy for supernumerary effectors involves utilizing electroencephalography (EEG) through motor imagery (MI) functions. In this work, we investigate whether MI activity associated with a supernumerary effector could be reliably differentiated from that of a natural one, thus addressing the concern of concurrency. Twenty subjects were recruited to participate in a two-fold experiment in which they observed movements of natural and supernumerary thumbs, then engaged in MI of the observed movements, conducted in a virtual reality setting. Results: A lightweight deep-learning model that accounts for the temporal, spatial and spectral nature of the EEG data is proposed and called BandFocusNet, achieving an average classification accuracy of 70.9% using the leave-one-subject-out cross validation method. The trustworthiness of the model is examined through explainability analysis, and influential regions-of-interests are cross-validated through event-related-spectral-perturbation (ERSPs) analysis. Explainability results showed the importance of the right and left frontal cortical regions, and ERSPs analysis showed an increase in the delta and theta powers in these regions during the MI of the natural thumb but not during the MI of the supernumerary thumb. Conclusion: Evidence in the literature indicates that such activation is observed during the MI of natural effectors, and its absence could be interpreted as a lack of embodiment of the supernumerary thumb.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.50
自引率
3.40%
发文量
20
审稿时长
10 weeks
期刊介绍: The IEEE Open Journal of Engineering in Medicine and Biology (IEEE OJEMB) is dedicated to serving the community of innovators in medicine, technology, and the sciences, with the core goal of advancing the highest-quality interdisciplinary research between these disciplines. The journal firmly believes that the future of medicine depends on close collaboration between biology and technology, and that fostering interaction between these fields is an important way to advance key discoveries that can improve clinical care.IEEE OJEMB is a gold open access journal in which the authors retain the copyright to their papers and readers have free access to the full text and PDFs on the IEEE Xplore® Digital Library. However, authors are required to pay an article processing fee at the time their paper is accepted for publication, using to cover the cost of publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信