{"title":"MVBNSleepNet: A Multi-View Brain Network-Based Convolutional Neural Network for Neonatal Sleep Staging","authors":"Ligang Zhou;Minghui Liu;Xia Hu;Laishuan Wang;Yan Xu;Chen Chen;Wei Chen","doi":"10.1109/OJEMB.2025.3548002","DOIUrl":null,"url":null,"abstract":"<italic>Goal:</i> To develop a high-performance and robust solution for neonatal sleep staging that incorporates spatial topological information and functional connectivity of the brain, which are often overlooked in existing approaches. <italic>Methods:</i> We propose MVBNSleepNet, a multi-view brain network-based convolutional neural network. The framework integrates a multi-view brain network (MVBN) to characterize brain functional connectivity from linear temporal correlation, information-theoretic, and phase-dynamics perspectives, providing comprehensive spatial topological information. A masking mechanism is employed to enhance model robustness by simulating random dropout or low-quality signal conditions. Additionally, an attention mechanism focuses on key regions of the brain network and reveals structural brain connectivity during sleep, while a CNN module extracts spatial features from brain networks and classifies them into specific sleep stages. The model was validated on a clinical dataset of 64 neonatal EEG recordings using a leave-one-subject-out validation strategy. <italic>Results:</i> MVBNSleepNet achieved an accuracy of 83.9% in the two-stage sleep task (sleep and wakefulness) and 76.4% in the three-stage task (active sleep, quiet sleep, and wakefulness), outperforming state-of-the-art methods. <italic>Conclusions:</i> The proposed MVBNSleepNet provides a robust and accurate solution for neonatal sleep staging and offers valuable insights into the functional connectivity of the early neural system.","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":"6 ","pages":"459-464"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10914539","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Engineering in Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10914539/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Goal: To develop a high-performance and robust solution for neonatal sleep staging that incorporates spatial topological information and functional connectivity of the brain, which are often overlooked in existing approaches. Methods: We propose MVBNSleepNet, a multi-view brain network-based convolutional neural network. The framework integrates a multi-view brain network (MVBN) to characterize brain functional connectivity from linear temporal correlation, information-theoretic, and phase-dynamics perspectives, providing comprehensive spatial topological information. A masking mechanism is employed to enhance model robustness by simulating random dropout or low-quality signal conditions. Additionally, an attention mechanism focuses on key regions of the brain network and reveals structural brain connectivity during sleep, while a CNN module extracts spatial features from brain networks and classifies them into specific sleep stages. The model was validated on a clinical dataset of 64 neonatal EEG recordings using a leave-one-subject-out validation strategy. Results: MVBNSleepNet achieved an accuracy of 83.9% in the two-stage sleep task (sleep and wakefulness) and 76.4% in the three-stage task (active sleep, quiet sleep, and wakefulness), outperforming state-of-the-art methods. Conclusions: The proposed MVBNSleepNet provides a robust and accurate solution for neonatal sleep staging and offers valuable insights into the functional connectivity of the early neural system.
期刊介绍:
The IEEE Open Journal of Engineering in Medicine and Biology (IEEE OJEMB) is dedicated to serving the community of innovators in medicine, technology, and the sciences, with the core goal of advancing the highest-quality interdisciplinary research between these disciplines. The journal firmly believes that the future of medicine depends on close collaboration between biology and technology, and that fostering interaction between these fields is an important way to advance key discoveries that can improve clinical care.IEEE OJEMB is a gold open access journal in which the authors retain the copyright to their papers and readers have free access to the full text and PDFs on the IEEE Xplore® Digital Library. However, authors are required to pay an article processing fee at the time their paper is accepted for publication, using to cover the cost of publication.