{"title":"Opening mathematics texts: A critical discourse analysis of probability problems in mathematics textbook","authors":"B. Bustang","doi":"10.20414/betajtm.v16i1.574","DOIUrl":"https://doi.org/10.20414/betajtm.v16i1.574","url":null,"abstract":"[English]: This article investigates the nature of probability problems presented in mathematics textbook using the socio-political perspective and critical discourse analysis drawn from well-known critical linguists Norman Fairclough. Specifically, the paper analyzed how the students are positioned by the problems presented in the text, to find out the role of authors and student readers, and to gain insight about the possible consequences for students. Drawing on Fairclough's three-dimensional model for critical discourse analysis as a framework for studying the relationship between the written text of probability problems in the textbook, the associated discursive practices, and the social practice to which the discursive practices form part, the article argues that the textbook authors tend to be authoritative by directing students about what to do and how to do the probability (mathematical) activities. The analysis also shows that the use of real-word problems in the text points out the attempts of the authors to present the probability concepts more relevant and accessible to the student readers. The article demonstrates the usefulness of Fairclough's three-dimensional model as a framework for analyzing probability problems presented in the mathematics textbook.\u0000[Bahasa]: Artikel ini menyelidiki sifat masalah peluang yang disajikan dalam buku teks matematika dengan menggunakan perspektif sosio-politik dan analisis wacana kritis yang diambil dari ahli bahasa kritis terkenal Norman Fairclough. Secara khusus, makalah ini menganalisis bagaimana siswa diposisikan oleh masalah yang disajikan dalam teks, untuk mengetahui peran penulis dan siswa sebagai pembaca, serta untuk mendapatkan wawasan tentang konsekuensi yang mungkin terjadi pada siswa. Merujuk pada model tiga dimensi Fairclough untuk analisis wacana kritis sebagai kerangka kerja untuk mempelajari hubungan antara teks tertulis dari masalah peluang dalam buku teks, praktik diskursif yang terkait, dan praktik sosial yang merupakan bagian dari praktik diskursif, artikel ini menunjukkan bahwa penulis buku teks cenderung otoriter dengan mengarahkan siswa tentang apa yang harus dilakukan dan bagaimana melakukan kegiatan berkaitan dengan konsep peluang (matematika). Analisis juga menunjukkan bahwa penggunaan masalah berbasis kehidupan sehari-hari dalam teks menunjukkan upaya penulis untuk menyajikan konsep peluang yang lebih relevan dan dapat diakses oleh siswa. Artikel ini menunjukkan kegunaan model tiga dimensi Fairclough sebagai kerangka kerja untuk menganalisis masalah peluang yang disajikan dalam buku teks matematika.","PeriodicalId":31758,"journal":{"name":"Beta Jurnal Tadris Matematika","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42590306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sri Rahayuningsih, Muhammad Nurhusain, Sirajuddin Sirajuddin
{"title":"Exploring students’ imaginative process: Analysis, evaluation, and creation in mathematical problem-solving","authors":"Sri Rahayuningsih, Muhammad Nurhusain, Sirajuddin Sirajuddin","doi":"10.20414/betajtm.v16i1.537","DOIUrl":"https://doi.org/10.20414/betajtm.v16i1.537","url":null,"abstract":"[English]: The role of imagination as a means of learning mathematics, unlike in other fields such as art and literature, is not well defined. The present study aims to examine the process of students’ imagination in solving mathematics problems. It involved three grade 8 students which were purposively selected based on their scores in a given test. Students’ answers to the test and the results of interviews were examined qualitatively referring to the three stages of creative problem-solving that involve imagination: analysis, evaluation and creation. The results show that, in the analysis phase, imagination was found in the students’ ability to define problems in general (common visual). As the first step in solving a problem, they analysed mathematical knowledge needed to solve the problem. In the evaluation phase, imagination was formed as students completed the final answer by creating visual representations from previous experiences as artifacts taken together and gathering necessary knowledge. In the last phase, creation, imagination was identified when students engaged in a cyclical thought process to find new ideas in solving the problem. This process repeated until the students found no other ideas or ways to solve the problem.\u0000[Bahasa]: Peran imajinasi sebagai sarana belajar matematika belum didefinisikan dengan baik, tidak seperti pada bidang lain seperti seni dan sastra. Penelitian ini bertujuan menelusuri proses imajinasi siswa selama melakukan pemecahan masalah matematika. Penelitian ini melibatkan tiga siswa kelas 8 yang dipilih melalui purposive sampling, berdasarkan nilai tertinggi hasil tes pemecahan masalah matematika. Jawaban siswa dan hasil wawancara dianalisis secara kualitatif dengan merujuk pada tiga tahapan proses kreatif yang melibatkan imajinasi: analisis, evaluasi dan kreasi. Hasil penelitian menunjukkan, pada tahap analisis, imajinasi yang terbentuk ditandai dengan kemampuan siswa menetapkan masalah secara umum (common visual). Sebagai langkah awal untuk menyelesaikan masalah, siswa melakukan koreksi dengan cara memikirkan kembali pengetahuan matematika yang dibutuhkan. Proses imajinasi pada tahap evaluasi ditunjukkan oleh kemampuan siswa dalam menyimpulkan jawaban akhir dengan cara membangun visual dari pengalaman sebelumnya sebagai artefak yang diambil bersama serta mengumpulkan pengetahuan yang diperlukan. Pada tahap kreasi, kemampuan siswa melakukan proses berpikir secara siklis dalam memikirkan ide baru untuk menyelesaikan masalah yang dihadapi menunjukkan proses imajinasi pada tahap ini. Proses ini berlangsung secara berulang, sampai siswa tidak memiliki ide lagi untuk menyelesaikan masalah.","PeriodicalId":31758,"journal":{"name":"Beta Jurnal Tadris Matematika","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45049908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
T. Zubaidah, R. Johar, Dewi Annisa, Yulinar Safitri
{"title":"Teacher's Pedagogical Content Knowledge (PCK) in implementing Realistic Mathematics Education (RME)","authors":"T. Zubaidah, R. Johar, Dewi Annisa, Yulinar Safitri","doi":"10.20414/betajtm.v16i1.550","DOIUrl":"https://doi.org/10.20414/betajtm.v16i1.550","url":null,"abstract":"[English]: Pedagogical Content Knowledge (PCK) is crucial for mathematics teachers in teaching and learning due to the fact that mathematics is an abstract and interrelated subject; requiring adequate knowledge on the content and instructional practices. Applying Realistic Mathematics Education (RME) help students learn in meaningful way since it starts with contextual problems. Therefore, to realize the meaningful learning, teachers need to have PCK in implementing RME. This study aims to analyze two teachers' PCK in implementing RME for geometry topic. Prior to the classroom teaching, both teachers received teacher professional development program regarding RME. Data in this study were collected through classroom observation and interviews which were the analyzed qualitatively. The results of the analysis show that both teachers have similar PCK in applying RME. The PCK indicator fulfilled by the teachers is further discussed in this paper.\u0000[Bahasa]: Pedagogical Content Knowledge (PCK) atau pengetahuan pedadogis dan konten sangat diperlukan bagi guru matematika dalam pembelajaran karena matematika bersifat abstrak dan saling berkaitan, sehingga memerlukan penguasaan materi dan perencanaan pembelajaran yang baik. Pembelajaran dengan Pendidikan Matematika Realistik (RME) membantu siswa belajar bermakna karena dimulai dari masalah nyata yang terdapat dalam kehidupan sehari-hari atau konteks. Oleh karena itu, untuk mewujudkan pembelajaran bermakna tersebut, guru harus memiliki PCK dalam menerapkan RME. Penelitian ini bertujuan menganalisis PCK dua orang guru dalam menerapkan RME pada materi geometri. Kedua guru tersebut telah mengikuti program pengembangan profesional guru sebelum pembelajaran dilaksanakan. Data dalam penelitian ini dikumpulkan melalui observasi dan wawancara yang dianalisis secara kualitatif. Hasil penelitian menunjukkan bahwa kedua guru memiliki PCK yang sama dalam menerapkan RME. Indikator yang dipenuhi dibahas lebih lanjut dalam tulisan ini.","PeriodicalId":31758,"journal":{"name":"Beta Jurnal Tadris Matematika","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44630295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Language in Mathematics Education: On the epistemic and reconstructivistic side of languaging processes","authors":"T. Kuzu","doi":"10.20414/betajtm.v16i1.474","DOIUrl":"https://doi.org/10.20414/betajtm.v16i1.474","url":null,"abstract":"[English]: In this article, languaging processes in mathematics education will be reflected from a theoretical and methodological viewpoint. Language is not just a tool for language learning: It is a highly complex medium for transporting meaning. It plays a key role in explaining and fostering as well as reconstructing and interpreting cognitive processes – not only in mathematics education, but due to the abstract nature of mathematical objects in a particularly important way. Thus, language as a mediational dimension is essential in the learners’ as well as researchers’ processes of understanding, be it in interpretational processes or in verbalized, deictical, either explicit or implicit explanations and actions. In this article, this dual-sided perspective will be explained by giving insights into language-related processes of interpreting and understanding mathematical relations in Substantial Learning Environments (SLE’s) as well as relational strategies such as the ‘Auxiliary Task.’\u0000[Bahasa]: Artikel ini membahas proses berbahasa dalam pendidikan matematika dari perspektif teoritis dan metodologi. Bahasa bukan saja sebuah alat untuk pembelajaran bahasa tetapi juga sebuah medium yang sangat kompleks untuk menyampaikan makna. Bahasa memainkan peran penting untuk menjelaskan dan memelihara serta mengembangkan dan memaknai proses kognitif - tidak hanya dalam pendidikan matematika, tetapi karena karakateristik objek matematika yang abstrak sehingga peran bahasa diperlukan. Oleh sebab itu, bahasa sebagai sebuah dimensi mediasional sangat penting dalam proses pemahaman siswa dan peneliti baik itu dalam proses interpretasi atau dalam penjelasan dan tindakan yang diverbalkan, deiktis, baik eksplisit maupun implisit. Dalam artikel ini, perspektif dua sisi ini akan dijelaskan dengan memberikan wawasan ke dalam proses yang berhubungan dengan bahasa untuk menafsirkan dan memahami hubungan matematika dalam konteks Linkungan Belajar Substansial (Substantial Learning Environments, SLE) serta strategi relasional seperti Tugas Tambahan (Auxiliary Task).","PeriodicalId":31758,"journal":{"name":"Beta Jurnal Tadris Matematika","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67536904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ketut Sarjana, Ni Made Intan Kertiyani, Laila Hayati, Baidowi Baidowi
{"title":"Developing instructional props to reinvent the area of parallelogram and triangle in online learning","authors":"Ketut Sarjana, Ni Made Intan Kertiyani, Laila Hayati, Baidowi Baidowi","doi":"10.20414/betajtm.v16i1.555","DOIUrl":"https://doi.org/10.20414/betajtm.v16i1.555","url":null,"abstract":"[English]: For elementary school students who are still in the stage of concrete thinking, the concept of area in geometry is an abstract idea. In order to bridge the gap between concrete thinking and abstract thinking, teaching aids such as props are necessary. However, props are mostly used in face-to-face lessons, while the pandemic has forced learning to be conducted online. Employing the ADDIE model (Analysis, Design, Development, Implementation, Evaluation), this study developed a prop and instructions for using it to help students understand the area of parallelograms and triangles for online learning. Data for this study were collected through observation, interviews, validation sheets, and tests. The tryout of the props involved 281 elementary school students. The result of the study shows that the developed teaching prop provides consistent results in different classes. In addition, this prop and its manual are also effective for online learning, so teachers can use them as alternatives to assist students in reinventing the formula of the area of parallelograms and triangles. [Bahasa]: Konsep luas pada materi geometri matematika di sekolah dasar merupakan hal yang abstrak untuk peserta didik yang masih dalam tahap berpikir konkrit. Untuk menjembatani perbedaan tahap berpikir diperlukan alat bantu belajar seperti alat peraga dalam pembelajaran. Namun, alat peraga kebanyakan digunakan pada pembelajaran tatap muka, sementara pandemi menyebabkan pembelajaran harus dilakukan secara daring dari rumah. Penelitian ini mengembangkan alat peraga dan petunjuk penggunaannya untuk membantu peserta didik menentukan luas jajar genjang dan segitiga dalam pembelajaran daring. Penelitian ini menggunakan model ADDIE (Analysis, Design, Development, Implementation, Evaluation). Instrumen pengumpulan data terdiri dari lembar observasi, pedoman wawancara, lembar validasi dan tes pemahaman luas jajar genjang dan segitiga. Uji coba alat peraga melibatkan 281 siswa sekolah dasar. Hasil penelitian menunjukan bahwa alat peraga yang dikembangkan memberikan hasil yang konsisten di berbagai level kelas. Selain itu, alat peraga dan petunjuk penggunaannya juga efektif digunakan dalam pembelajaran daring sehingga dapat dijadikan referensi untuk membantu peserta didik dalam menemukan kembali rumus luas jajar genjang dan segitiga.","PeriodicalId":31758,"journal":{"name":"Beta Jurnal Tadris Matematika","volume":"36 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135433898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The construct validity of mathematical reasoning and proof test instrument integrated with GeoGebra: Second-order confirmatory factor analysis","authors":"Y. M. Sari, H. Retnawati, S. Fiangga","doi":"10.20414/betajtm.v15i2.549","DOIUrl":"https://doi.org/10.20414/betajtm.v15i2.549","url":null,"abstract":"[English]: Mathematical reasoning and proof instruments assess students' reasoning in solving proof problems. The importance of reasoning and proof in mathematics is documented in skills that students need to be developed in several curricula. However, there are some issues in the assessment of mathematical reasoning and proof in Indonesia. One of them is no instruments that meet construct validity. The existing instruments only confirm the teacher's interpretation by focusing on mathematical problems that measure students’ knowledge. Therefore, there is a need to determine the construct validity of items in assessing mathematical reasoning and proof. For this need, this research aims to develop and evaluate the construct validity of the developed instrument. There are four aspects of a mathematical reasoning and proof instrument integrated with GeoGebra, namely CMR (Creative Mathematical Reasoning), IR (Imitative Reasoning), FP (Formal Proof), and EP (Empirical Proof). The data was obtained by conducting tests on 300 high school students in East Java, Indonesia. Second-order confirmatory factor analysis (CFA) was used to analyze the data using Lisrel 8.80 software. The results showed that the developed eight items are valid or unidimensional, with a t-value > 1.96 and a loading factor value > 0.5. This reveals that the parameter of the item is unidimensional; hence, it can measure students’ mathematical reasoning and proof.\u0000[Bahasa]: Instrumen penalaran dan pembuktian matematika merupakan alat untuk menilai kemampuan penalaran siswa dalam memecahkan masalah pembuktian. Pentingnya penalaran dan pembuktian dalam matematika didokumentasikan dalam keterampilan yang harus dikuasai siswa dalam beberapa kurikulum. Akan tetapi, terdapat kesenjangan penilaian penalaran dan pembuktian matematis di Indonesia, yaitu belum adanya intrumen yang memenuhi validitas konstruk sehingga instrumen yang dikembangkan hanya menegaskan interpretasi guru dengan menitikberatkan pada masalah matematika yang mengukur pengetahuan siswa. Oleh karena itu, ada kebutuhan untuk menunjukkan validitas konstruk item dalam penilaian penalaran dan pembuktian matematika. Untuk memenuhi kebutuhan tersebut, penelitian ini bertujuan mengembangkan dan menentukan validitas kontruk instrumen yang dikembangkan. Terdapat empat aspek instrumen penalaran dan pembuktian matematika terintegrasi GeoGebra, yaitu CMR (Creative Mathematical Reasoning), IR (Imitative Reasoning), FP (Formal Proof), dan EP (Empirical Proof). Data diperoleh dengan melakukan pengujian tes terhadap 300 siswa SMA di Jawa Timur, Indonesia. Data dianalisis menggunakan analisis faktor konfirmatori orde kedua (CFA) berbantuan perangkat lunak Lisrel 8.80. Hasil penelitian menunjukkan bahwa, dari semua item, sebanyak 8 item valid atau unidimensional, dengan nilai t > 1,96 dan nilai faktor loading > 0.5. Hal ini menunjukkan bahwa parameter butir soal tersebut unidimensi sehingga dapat mengukur komposisi penalaran dan pembuktian mat","PeriodicalId":31758,"journal":{"name":"Beta Jurnal Tadris Matematika","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48702786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Fatra, A. Sihombing, Bella Aprilia, Khamida Siti Nur Atiqoh
{"title":"The impact of habits of mind on students' mathematical reasoning: The mediating initial ability","authors":"M. Fatra, A. Sihombing, Bella Aprilia, Khamida Siti Nur Atiqoh","doi":"10.20414/betajtm.v15i2.540","DOIUrl":"https://doi.org/10.20414/betajtm.v15i2.540","url":null,"abstract":"[English]: This study aims to analyze the relationship between thinking habits and mathematical reasoning mediated by students' initial abilities. Respondents consisted of 385 years eight students. Data was collected using a questionnaire via Google Forms and online tests. From all samples, 124 students fully completed all instruments. A questionnaire with 32 statements of the Likert scale model was used to collect data on students’ thinking habits (X1). Mathematical reasoning (Y) was examined through a test using five items of essay problems on relations and functions topic. The student's initial ability data (X2) was collected through an objective test using ten multiple-choice questions on set and Cartesian coordinates. The data was analyzed through descriptive statistics and path analysis. The results show a direct influence between students' habits of mind, initial ability, and mathematical reasoning. There is an indirect effect of habits of mind on students' reasoning abilities through initial ability as a moderator variable. The findings of this study indicate that the better the students' habits of mind, the better their mathematical reasoning and initial ability.\u0000[Bahasa]: Penelitian survei ini bertujuan untuk menganalisis hubungan kebiasaan berpikir dengan penalaran matematis yang dimediasi oleh kemampuan awal siswa. Responden terdiri dari 385 siswa kelas VIII. Data dikumpulkan menggunakan kuesioner melalui Google Form dan tes secara daring. Dari semua sampel yang menerima instrumen, ada 124 orang siswa menyelesaikan semua instrumendengan lengkap. Instrumen pengumpulan data untuk variabel kebiasaan berpikir (X1) menggunakan angket dengan 32 pernyataan model skala Likert. Data penalaran matematis (Y) diperoleh melalui tes berupa 5 butir soal uraian pada materi relasi dan fungsi. Data kemampuan awal siswa (X2) diperoleh melalui tes objektif berupa 10 butir soal pilihan ganda pada materi himpunan dan koordinat kartesius. Data dianalisis menggunakan statistik deskriptif dan analisis jalur. Hasil penelitian menunjukkan terdapat pengaruh langsung antara kebiasaan berpikir siswa, kemampuan awal, dan penalaran matematis. Terdapat pengaruh tidak langsung kebiasaan berpikir terhadap kemampuan penalaran siswa melalui kemampuan awal sebagai variabel penengah. Temuan penelitian ini mencerminkan bahwa semakin baik kebiasaan berfikir siswa maka semakin baik pula kemampuan penalaran matematis dan kemampuan awal siswa.","PeriodicalId":31758,"journal":{"name":"Beta Jurnal Tadris Matematika","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41364217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analyzing students’ mathematical reasoning from the perspective of learning interest","authors":"U. Sholihah, Agnis Listanti","doi":"10.20414/betajtm.v15i2.535","DOIUrl":"https://doi.org/10.20414/betajtm.v15i2.535","url":null,"abstract":"[English]: In mathematics teaching and learning, most of the students are not yet able to understand and connect given problems or tasks with mathematics concepts or ideas required to solve the problem. This might relate to their reasoning ability and this ability is likely to be affected by their learning interest. The objective of this study is to describe students' mathematical reasoning based on different learning interests, involving six secondary students with high, medium, and low levels of learning interests, which were identified through a learning interest questionnaire. Data was collected through a reasoning test and interviews and then was qualitatively analyzed by referring to problem-solving stages integrated with aspects of mathematical reasoning. Data analysis was referred to as problem-solving stages integrated with the indicators of reasoning. It shows the different achievements of mathematical reasoning indicators by students who have distinct levels of learning interest; the higher the learning interest students have, the more indicators of reasoning they have. This indicates that students’ learning interest relates to their mathematical reasoning ability. \u0000[Bahasa]: Dalam pembelajaran matematika, banyak ditemukan siswa kurang mampu memahami dan mengaitkan informasi dari soal dengan konsep matematika yang dibutuhkan untuk menyelesaikan soal yang diberikan. Hal ini mungkin berkaitan dengan kemampuan penalaran matematis dan penalaran matematika bisa saja dipengaruhi oleh minat belajar siswa. Penelitian ini berujuan mendeskripsikan kemampuan penalaran matematis siswa berdasarkan perbedaan minat belajar siswa. Untuk mencapai tujuan tersebut, studi kasus digunakan. Penelitian ini melibatkan enam siswa dengan minat belajar tinggi, sedang, dan rendah yang diketahui melalui angket minat belajar. Data dikumpulkan melalui tes dan wawancara kemudian dianalisis secara kualitatif dengan merujuk pada langkah pemecahan masalah yang diintegrasikan dengan indikator penalaran. Hasil penelitian menunjukkan perbedaan pencapaian indikator penalaran matematis oleh siswa dengan tingkat minat belajar berbeda; semakin tinggi minat belajar siswa, lebih banyak indikator penalaran matematis yang dipenuhi. Hal ini menunjukkan minat belajar dan kemampuan penalaran matematis berkaitan.","PeriodicalId":31758,"journal":{"name":"Beta Jurnal Tadris Matematika","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48656527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analysis of students’ anxiety based on Van Hiele’s levels in solving geometry problems","authors":"Safarinda Handayani, Dian Permatasari","doi":"10.20414/betajtm.v15i2.551","DOIUrl":"https://doi.org/10.20414/betajtm.v15i2.551","url":null,"abstract":"[English]: Mathematics anxiety emerges due to discomfort when dealing with mathematical problems, including problems in geometry. This qualitative research aims to analyze how students' anxiety in solving the problems referring to Van Hiele’s levels. The participants were sixty grade 7 students. Data was collected through a test, questionnaire, observations, and semi-structured interviews. It was then analyzed following the stages of condensation, presentation, and drawing and verifying conclusions. The research found that students at the visualization level have moderate anxiety and panic levels, students at the analysis level have moderate anxiety, and students with informal deduction levels have low anxiety. The high level of students' geometric thinking does not necessarily result in lower anxiety or vice versa. Math anxiety is able to encourage students, but at a certain level, it could be detrimental to students. \u0000[Bahasa]: Kecemasan matematika timbul salah satunya karena rasa tidak nyaman ketika berhadapan dengan masalah matematika termasuk dalam menyelesaikan masalah geometri. Penelitian kualitatif ini bertujuan untuk menganalisis kecemasan siswa dalam menyelesaikan soal geometri ditinjau dari level Van Hiele. Enam puluh siswa SMP kelas 7 dilibatkan dalam penelitian. Data penelitian dikumpulkan melalui tes, angket, observasi, dan wawancara semi terstruktur. Analisis data dilakukan melalui tiga tahap yaitu kondensasi data, penyajian data, serta penarikan dan verifikasi kesimpulan. Hasil penelitian menunjukkan bahwa siswa yang berada di level visualisasi memiliki tingkat kecemasan sedang dan panik, siswa pada level analisis memiliki kecemasan sedang, dan siswa pada level deduksi informal memiliki kecemasan rendah. Tingginya tingkat berpikir geometris siswa belum tentu mengakibatkan kecemasan yang rendah atau sebaliknya. Kecemasan matematika dapat mendukung siswa, akan tetapi pada tingkat kecemasan tertentu, dapat merugikan siswa. ","PeriodicalId":31758,"journal":{"name":"Beta Jurnal Tadris Matematika","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42216176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kusaeri Kusaeri, Calista Dwisanti, A. Yanti, Ali Ridho
{"title":"Indonesian Madrasah Competency Assessment: Students’ numeracy based on age","authors":"Kusaeri Kusaeri, Calista Dwisanti, A. Yanti, Ali Ridho","doi":"10.20414/betajtm.v15i2.558","DOIUrl":"https://doi.org/10.20414/betajtm.v15i2.558","url":null,"abstract":"[English]: This study aims to analyze primary madrasah students’ numeracy based on their age difference; 10-12 years old and to confirm whether the older the students, the better their academic ability when compared to younger students as prior studies suggest. This study used the results of the year 2022 Indonesian Madrasah Competence Assessment (AKMI) in East Java comprising 7.356 students. Students’ numeracy was categorized into five proficiency levels: need intervention, basic, proficient, skilled, and need creative space. Data shows that students who participated in AKMI were dominated by 11-year-old students. In each age group, the spread of the proficiency level is similar, for example, the largest number of students in each group is at the proficient level. Moreover, students in the 11-year-old group have the highest average score, but the difference between the group is not significant. This indicates that they have slightly better numeracy skills than the other groups. Despite the slight difference, the distinct characteristics of each age group could be identified, for example, the number of students, proficiency levels, and average numeracy scores.\u0000[Bahasa]: Penelitian ini bertujuan menganalisis numerasi siswa Madrasah Ibtidaiyah (MI) berdasarkan perbedaan umur; 10-12 tahun dan mengonfirmasi apakah siswa yang lebih tua memiliki kemampuan akademik yang lebih baik daripada siswa yang lebih muda sebagaimana ditunjukkan oleh penelitian terdahulu. Penelitian ini menggunakan data hasil Asesmen Kompetensi Madrasah Indonesia (AKMI) di Jawa Timur yang melibatkan 7.356 siswa. Numerasi siswa dikelompokkan dalam lima kategori kemahiran, yaitu perlu intervensi, dasar, cakap, terampil, dan perlu ruang kreasi. Data menunjukkan bahwa peserta AKMI terbanyak adalah siswa usia 11 tahun. Pada setiap kelompok umur, sebaran level kemahiran tidak berbeda, misalnya, sebagian besar siswa pada setiap kelompok umur berada pada level cakap. Selain itu, siswa pada kelompok umur 11 tahun memiliki rata-rata nilai numerasi tertinggi, namun perbedaan setiap kelompok tidak signifikan. Hal ini menunjukkan bahwa siswa usia 11 tahun memiliki numerasi yang sedikit lebih baik. Walaupun memiliki perbedaan yang tidak signifikan, perbedaan karakteristik setiap kelompok umur tetap dapat diidentifikasi, misalnya jumlah siswa pada tiap kategori usia, tingkat kemahiran, dan rata-rata skor numerasi.","PeriodicalId":31758,"journal":{"name":"Beta Jurnal Tadris Matematika","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46394459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}