{"title":"Procedural knowledge or conceptual knowledge? Developing the so-called proceptual knowledge in mathematics learning","authors":"Mardyanto Barumbun, Dian Kharisma","doi":"10.20414/betajtm.v15i2.472","DOIUrl":"https://doi.org/10.20414/betajtm.v15i2.472","url":null,"abstract":"[English]: Some students might have the proper knowledge to use mathematical procedures where relevant, but do they actually have a solid understanding of “why or how” those procedures work? Such an incomplete understanding of mathematics concepts can be a stumbling block in students’ success in mathematics. This paper aims to propose and elaborate a framework for developing proceptual knowledge combining both procedural and conceptual knowledge on differentiation that are constructed on existing mathematics learning theories on how we understand mathematics, besides my personal reflections from the independent learning on differentiation. The theoretical and practical perspectives proposed in this article share insight with anyone in developing a more meaningful mathematics-independent learning experience, especially on topics with complex mathematical formulas or procedures, such as differentiation.\u0000[Bahasa]: Sebagian siswa mungkin memiliki pengetahuan yang tepat dalam menggunakan prosedur matematika secara relevan, namun apakah mereka sungguh memiliki pemahaman yang utuh tentang \"mengapa atau bagaimana\" prosedur matematika tersebut diperoleh? Pemahaman yang tidak utuh tersebut berpotensi menjadi penghalang kesuksesan siswa dalam memahami konsep matematika. Artikel ini mengusulkan kerangka kerja untuk mengembangkan proceptual knowledge (pengetahuan proseptual) pada materi turunan, yakni kombinasi pengembangan pengetahuan prosedural dan konseptual matematika yang dibangun di atas teori-teori pembelajaran matematika yang ada, serta hasil refleksi pribadi penulis dari proses belajar mandiri tentang konsep rumus diferensial. Perspektif teoritis dan praktis yang diusulkan dalam artikel ini dapat menjadi panduan bagi siapa saja untuk mengembangkan pengalaman belajar matematika yang lebih bermakna, khususnya pada topik dengan rumus dan prosedur matematis yang kompleks seperti pada turunan.","PeriodicalId":31758,"journal":{"name":"Beta Jurnal Tadris Matematika","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45802008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A didactical design for introducing the concepts in algebraic forms using the theory of praxeology","authors":"Nadya Syifa Utami, S. Prabawanto, N. Priatna","doi":"10.20414/betajtm.v15i1.508","DOIUrl":"https://doi.org/10.20414/betajtm.v15i1.508","url":null,"abstract":"[English]: This phenomenological study aims to thoroughly investigate the meaning of concepts in algebraic forms developed by students, both in the past learning process and in the didactical design implementation, as well as a teacher's instructional experiences as the basis for preparing a didactical design. Six seventh-grade students and a mathematics teacher participated in the study, comprising three phases: (1) analyzing students’ learning obstacles through a test and teacher’s interview, (2) preparing hypothetical learning trajectory (HLT) and didactical design based on the identification of the obstacles and in-depth interviews with the teacher, and (3) implementing the didactical design. This study revealed that students have a didactical obstacle because the teacher delivers formal definitions of algebraic form concepts followed by examples of problems. It results in epistemological obstacles, as students' understanding of the concepts is limited according to what the teacher explains. Furthermore, an HLT was developed that bridges students' arithmetic knowledge with algebra. The series of tasks were organized referring to the theory of praxeology by taking the daily-life context Let's Save. During the learning process, students use different representations, such as symbols and letters, to demonstrate the variable, reason for using a particular representation, and state the definition of a variable based on their work. The procedure was also applied to the remaining four concepts. Through the tasks, students can actively construct their conceptual understanding of the concepts in the algebraic forms.\u0000[Bahasa]: Penelitian fenomenologi ini bertujuan untuk mengkaji secara mendalam pemaknaan siswa terhadap konsep-konsep dalam bentuk aljabar, baik pada proses belajar sebelumnya maupun pada implementasi desain didaktis, serta pengalaman mengajar guru sebagai landasan dalam membuat desain didaktis. Enam siswa kelas 7 dan seorang guru matematika menjadi partisipan pada penelitian ini, yang terdiri dari tiga tahap, yaitu: (1) analisis hambatan belajar siswa melalui uji tes dan wawancara guru, (2) menyiapkan lintasan belajar hipotetik (HLT) siswa dan desain didaktis berdasarkan identifikasi hambatan belajar siswa dan wawancara mendalam dengan guru, dan (3) mengimplementasikan desain didaktis kepada siswa. Hasil penelitian ini menunjukkan bahwa siswa mengalami hambatan didaktis yang disebabkan oleh cara guru mengajar. Guru cenderung memberikan definisi formal pada konsep-konsep bentuk aljabar dilanjutkan dengan contoh-contoh soal. Hal ini mengakibatkan siswa mengalami hambatan yang bersifat epistemologis, dimana pengetahuan siswa terhadap konsep-konsep bentuk aljabar terbatas berdasarkan apa yang dijelaskan oleh guru. Kemudian, dirancang HLT yang menjembatani pengetahuan aritmatika siswa dengan aljabar. Rangkaian tugas disusun berdasarkan teori praxeology dengan mengambil konteks kehidupan sehari-hari bertema Ayo Menabung. Selama proses pembelaja","PeriodicalId":31758,"journal":{"name":"Beta Jurnal Tadris Matematika","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49147107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Evaluating partial and simultaneous effects of logical-mathematical, visual-spatial, and intrapersonal intelligence on prospective primary teachers’ problem solving","authors":"Ika Febriana Wati, Pujiriyanto Pujiriyanto","doi":"10.20414/betajtm.v15i1.509","DOIUrl":"https://doi.org/10.20414/betajtm.v15i1.509","url":null,"abstract":"[English]: Problem-solving is the heart of mathematics learning that can be influenced by intelligence. Logical-mathematical, visual-spatial, and intrapersonal intelligence have possible effects on problem-solving. This ex post facto quantitative research aims to evaluate the effect of the three intelligence on the ability of prospective primary teachers (PPT) to solve mathematical problems partially and simultaneously. The research sample (n=207) was selected through proportional stratified random sampling using the Slovin formula. Data were collected through a test and questionnaire that had been tested for content and construct validity as well as construct and composite reliability. Data prerequisite tests include tests for normality, linearity, multicollinearity, and heteroscedasticity. Hypothesis testing is done through a multiple regression test. The results show that logical-mathematical, visual-spatial, and intrapersonal intelligence simultaneously have a significant effect on PPTs’ mathematical problem-solving with a large effect of 30.3%. Partially, intrapersonal intelligence does not have a significant effect on problem-solving ability.\u0000[Bahasa]: Pemecahan masalah merupakan jantung pembelajaran matematika yang bisa dipengaruhi oleh faktor kecerdasan. Jenis kecerdasan yang berpotensi memiliki pengaruh adalah logis-matematis, spasial-visual, dan intrapersonal. Penelitian kuantitatif ex post facto ini bertujuan untuk menguji pengaruh dari ketiga kecerdasan tersebut terhadap kemampuan pemecahan masalah matematis secara parsial maupun simultan. Sebanyak 207 mahasiswa sebagai sampel penelitian dipilih melalui proportional stratified random sampling menggunakan rumus Slovin. Data dikumpulkan melalui tes dan kuesioner yang sudah di uji validitas isi dan konstruk serta reliabilitas konstruk dan komposit. Uji prasyarat data meliputi uji normalitas, linearitas, multikolinearitas, dan heteroskedastisitas. Uji hipotesis dilakukan melalui uji regresi berganda. Hasil penelitian menunjukkan bahwa kecerdasan logis-matematis, spasial-visual, dan intrapersonal secara simultan berpengaruh signifikan terhadap kemampuan pemecahan masalah matematis dengan besar pengaruh 30,3%. Sedangkan secara parsial hanya kecerdasan intrapersonal yang tidak memiliki pengaruh signifikan terhadap kemampuan pemecahan masalah matematis.","PeriodicalId":31758,"journal":{"name":"Beta Jurnal Tadris Matematika","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47411810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Supporting students’ understanding of equivalent fractions using jelly","authors":"L. Sagita, R. Putri, Z. Zulkardi, B. Mulyono","doi":"10.20414/betajtm.v15i1.490","DOIUrl":"https://doi.org/10.20414/betajtm.v15i1.490","url":null,"abstract":"Fraction as part-whole is the key to further fractional understanding, such as equivalent fractions. A problem faced by students in equivalent fractions is that they understand one part without including the other parts. This article discusses how 4th-grade students understand fractions as part-whole and equivalent fractions using units of equivalent. Indonesian Realistic Mathematics Education-oriented learning environment using jelly context was developed and tested in two stages, involving six students with different levels of mathematics ability. The analysis of group discussions and students’ answers to the given tasks shows that students with low abilities have difficulty showing that 1/4 is one part of the four parts. The students only know fractions in a/b form without understanding their meaning. It impacts the construction of equivalent fractions as units of equivalent. High-ability students can easily do mathematization on 2/8 or 2/6 by making a cut pattern before cutting the jelly. The research contributes to learning design that begins with activities related to the fractions as part-whole.","PeriodicalId":31758,"journal":{"name":"Beta Jurnal Tadris Matematika","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45828782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Motivational profiles of prospective mathematics teachers based on different types of personalities","authors":"A. Kurniawati, Julia Noviani","doi":"10.20414/betajtm.v15i1.502","DOIUrl":"https://doi.org/10.20414/betajtm.v15i1.502","url":null,"abstract":"[English]: Students' motivation and personality are two important aspects of mathematics learning. Both aspects can be used as one of the bases for mathematics educators to design learning strategies. However, students' motivation for different personality types has not been widely revealed. This qualitative research aims to uncover prospective mathematics teachers’ (PMT) motivation with introverted and extroverted personalities in mathematics learning. The participants were selected using a personality test and then an interview was conducted. The findings show that, in general, the motivation profile of introverted PMT is different from the extroverted ones. Past experiences of success and self-efficacy became essential factors in the motivation of the introvert. As for the extrovert, friends, and interactions in an activity become a motivating factor in learning mathematics. Implications of the findings will be further discussed.\u0000[Bahasa]: Motivasi dan kepribadian siswa merupakan dua aspek penting dalam pembelajaran matematika. Kedua aspek tersebut dapat dijadikan salah satu landasan bagi pendidik matematika untuk merancang strategi pembelajaran. Namun, bagaimana motivasi siswa berdasarkan tipe kepribadian yang berbeda belum banyak terungkap. Penelitian kualitatif ini bertujuan mengungkap profil motivasi mahasiswa calon guru dengan kepribadian introver dan ekstrover dalam pembelajaran matematika. Partisipan dipilih dengan menggunakan instrumen tes kepribadian, kemudian dilakukan wawancara. Hasil penelitian menunjukkan, secara umum profil motivasi calon guru introver berbeda dengan yang memiliki kepribadian ekstrover. Pengalaman sukses masa lalu dan kepercayaan diri tentang kemampuan diri menjadi faktor penting dalam motivasi calon guru introver. Sedangkan untuk calon guru ekstrover, teman dan interaksi dalam suatu kegiatan menjadi faktor motivasi dalam belajar matematika. Implikasi hasil penelitian ini akan dibahas lebih lanjut dalam artikel ini.","PeriodicalId":31758,"journal":{"name":"Beta Jurnal Tadris Matematika","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47640328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Elementary students' functional thinking in solving context-based linear pattern problems","authors":"Muhammad Syawahid","doi":"10.20414/betajtm.v15i1.497","DOIUrl":"https://doi.org/10.20414/betajtm.v15i1.497","url":null,"abstract":"[English]: This study aims to identify elementary students’ functional thinking in solving context-based linear pattern problems. It involved 65 fifth-grade students who had not learned generalizing patterns topic. Data was collected through tests and interviews. Students with correct answers on the test were grouped into three categories based on the types of functional thinking and the use of representations. Interviews were conducted with three selected students to identify their thinking relating to actions and reflections. The findings showed that elementary students are able to think functionally consisting of three types: recursive-verbal, correspondence-verbal, and recursive to correspondence-symbolic. The students with recursive verbal add up the same numbers repeatedly and represent the generalization results verbally. For correspondence-verbal students, the relationship between two quantities with a certain pattern is determined and represented verbally. The students having recursive to correspondence-symbolic develop recursive generalization and then continue with the correspondence generalization and represent the relationship symbolically. The generalization of action and reflection is also identified in the students’ functional thinking.\u0000[Bahasa]: Penelitian ini bertujuan untuk mengidentifikasi proses berpikir fungsional siswa Sekolah Dasar (SD) dalam menyelesaikan soal pola linier berbasis konteks. Partisipan penelitian terdiri dari 65 siswa kelas 5 yang belum memperoleh materi generalisasi pola. Data dikumpulkan melalui tes dan wawancara. Siswa dengan jawaban benar pada tes dikelompokkan menjadi tiga kategori berdasarkan tipe berpikir fungsional dan representasi yang digunakan. Wawancara dilakukan dengan tiga siswa terpilih untuk mengidentifikasi proses berpikir terkait aksi dan refleksi. Hasil penelitian menunjukkan bahwa siswa SD mampu berpikir fungsional yang terdiri dari tiga jenis, yaitu berpikir fungsional recursive-verbal, correspondence-verbal, dan recursive to correspondence-symbolic. Berpikir fungsional recursive-verbal dilakukan dengan menjumlahkan bilangan yang sama secara berulang dan merepresentasikan hasil generalisasi secara verbal. Berpikir fungsional correspondence-verbal dilakukan dengan menentukan hubungan dua kuantitas dengan pola tertentu dan direpresentasikan secara verbal. Sedangkan berpikir fungsional kategori recursive to correspondence-symbolic dilakukan dengan generalisasi secara rekursif kemudian dilanjutkan dengan proses generalisasi secara koresponden dan merepresentasikan hubungan tersebut secara simbolik. Ketiga jenis berpikir fungsional tersebut dilakukan dengan tahapan generalisasi aksi dan refleksi.","PeriodicalId":31758,"journal":{"name":"Beta Jurnal Tadris Matematika","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45114493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"How secondary students develop the meaning of fractions? A hermeneutic phenomenological study","authors":"M. G. Isnawan, D. Suryadi, T. Turmudi","doi":"10.20414/betajtm.v15i1.496","DOIUrl":"https://doi.org/10.20414/betajtm.v15i1.496","url":null,"abstract":"[English]: Understanding various meanings of fractions is a foundation to learn related fractions topics. However, students are struggling with this essential topic. This hermeneutic phenomenological study aims to further investigate the meaning of fractions developed by secondary school students, the process of constructing the meaning using models, and factors that hinder the development of the meaning. It involved twenty-two students given fractions tasks, and some students of the different categories of mathematics ability were selected to be interviewed. A thematic analysis using NVivo-12 found that some students interpret fractions as a tool and integers. Most of the students in all categories tend to espouse fractions as ratio and quotient. However, they cannot use the models to represent the meanings. This study reveals that the students’ developed meanings of fractions are limited and different from what primary students have. In addition, there is an inconsistency between the espoused meanings and the use of models. The limitation and inconsistency are considered to be affected by teachers’ lack of content knowledge on the topic and less attention to using models in teaching fractions. This study implies that (mathematics) teachers education should pay more attention to the meaning of fractions and their related models in learning.\u0000[Bahasa]: Memahami makna pecahan merupakan dasar untuk mempelajari topik-topik terkait pecahan. Namun, siswa masih mengalami kesulitan dalam topik penting ini. Penelitian fenomenologi hermeneutika ini bertujuan untuk mengkaji lebih lanjut makna pecahan yang dibangun oleh siswa sekolah menengah, proses mengkonstruksi makna menggunakan berbagai model, dan faktor-faktor yang menghambat pengembangan makna pecahan. Penelitian ini melibatkan dua puluh dua siswa yang diberikan tugas matematika dan beberapa siswa dari berbagai kategori kemampuan matematika dipilih untuk diwawancarai. Analisis tematik menggunakan NVivo-12 menemukan bahwa beberapa siswa memaknai pecahan sebagai alat bantu dan bilangan bulat. Sebagian besar siswa pada semua kategori kemampuan matematika cenderung memaknai pecahan sebagai rasio dan hasil bagi. Namun, mereka tidak bisa menggunakan model untuk merepresentasikan makna pecahan tersebut. Penelitian ini menunjukkan bahwa makna pecahan yang dimiliki oleh siswa terbatas dan berbeda dari makna pecahan yang dimiliki siswa sekolah dasar. Selain itu, terdapat inkonsistensi antara makna pecahan yang diungkap siswa dengan penggunaan model. Keterbatasan dan inkonsistensi tersebut dianggap dipengaruhi oleh kurangnya pengetahuan konten guru tentang materi dan kurangnya penggunaan model dalam mengajar pecahan. Dalam hal ini, pendidikan guru (matematika) harus lebih memperhatikan makna pecahan dan penggunaan model pecahan dalam pembelajaran.","PeriodicalId":31758,"journal":{"name":"Beta Jurnal Tadris Matematika","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47515856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Zoom vs. Google Classroom: Which is likely more effective for supporting students’ learning in mathematics?","authors":"Siti Anisa Maesaroh, Leni Marlena","doi":"10.20414/betajtm.v14i2.430","DOIUrl":"https://doi.org/10.20414/betajtm.v14i2.430","url":null,"abstract":"[English]: The purpose of this study is to predict the probability of successful mathematics online learning using two platforms; Zoom Meeting and Google Classroom, towards students’ learning outcomes. The sample used was sixty-four grade 11 students. Data was collected through a test on matrix topics and then analyzed using probit regression. The results of the analysis show that the student's probability of success to achieve better learning outcomes using Zoom Meeting is 12.46% higher than Google Classroom. In this case, Zoom Meeting can be used as a virtual face-to-face platform, so that the teaching and learning process can be more communicative and interactive compared to Google Classroom, where its use is limited to the delivery of learning content only. Therefore, online learning using Zoom Meeting in mathematics is more recommended because it has a higher chance of improving students’ learning outcomes.\u0000[Bahasa]: Penelitian ini bertujuan memprediksi peluang keberhasilan pembelajaran daring matematika menggunakan platform Zoom Meeting dan Google Classroom terhadap hasil belajar siswa. Sampel yang digunakan sebanyak 64 siswa kelas XI. Pengambilan data dilakukan dengan tes hasil belajar pada materi matriks kemudian dianalisis menggunakan regresi probit. Berdasarkan hasil analisis, diperoleh peluang sukses siswa terhadap hasil belajar menggunakan platform Zoom Meeting 12,46% lebih tinggi dibandingkan dengan Google Classroom. Zoom Meeting merupakan platform yang dapat digunakan sebagai sarana tatap muka maya, sehingga pembelajaran dapat lebih komunikatif dan interaktif dibandingkan dengan Google Classroom yang penggunaannya dibatasi untuk penyampaian konten pembelajaran saja. Dengan demikian, pembelajaran daring menggunakan Zoom Meeting lebih direkomendasikan karena berpeluang lebih tinggi untuk meningkatkan hasil belajar matematika siswa.","PeriodicalId":31758,"journal":{"name":"Beta Jurnal Tadris Matematika","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43778229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Andi Saparuddin Nur, Inggrid Marlissa, K. Kamariah, M. Palobo, Widya Putri Ramadhani
{"title":"Mathematics education research in Indonesia: A scoping review","authors":"Andi Saparuddin Nur, Inggrid Marlissa, K. Kamariah, M. Palobo, Widya Putri Ramadhani","doi":"10.20414/betajtm.v14i2.464","DOIUrl":"https://doi.org/10.20414/betajtm.v14i2.464","url":null,"abstract":"[English]: This scoping review aims to examine mathematics education research in Indonesia in the last seven years. The articles searched through a national database (Sinta) yielded 595 articles that fulfill some criteria, for example, having published in level 1 and 2 journals from 2015 to 2021. A content analysis revealed that research mostly used by mathematics education researchers in Indonesia was qualitative (41.85%), quantitative (32.94%), and developmental (17.82%). The research participants were dominated by junior high school students (35.63%), college students or pre-service teachers (23.87%), and senior high school students (17.48%). The number of participants ranges from 31 to 60 (26.72%) in the majority of the research. Most of the research data were collected through tests, interviews, and questionnaires. Meanwhile, in analyzing the data, the use of descriptive statistics, qualitative methods, and t-tests were obtrusive. There are twelve most researched study topics in Indonesia, including mathematical ability (27.23%), technology application (13.28%), and cognitive processing (9.92%). Some study topics that have not been developed in Indonesia are philosophy and history of mathematics education, early childhood mathematics learning, and topics on multicultural, multilingualism, and equity in mathematics education. Meanwhile, the integration of Islamic values in teaching and learning mathematics is a particular topic in Indonesia. \u0000[Bahasa]: Penelitian ini bertujuan untuk mengkaji penelitian pendidikan matematika di Indonesia dalam tujuh tahun terakhir. Penelusuran artikel melalui basis data nasional (Sinta) menghasilkan 595 artikel yang memenuhi beberapa kriteria, diantaranya diterbitkan oleh jurnal kategori Sinta 1 dan Sinta 2 dari tahun 2015-2021. Hasil konten analisis menunjukkan bahwa penelitian paling banyak digunakan peneliti pendidikan matematika di Indonesia adalah kualitatif (41,85%), kuantitatif (32,94%), dan pengembangan (17,82%). Partisipan paling banyak dilibatkan adalah siswa SMP (35,63%), mahasiswa atau calon guru (23,87%), dan siswa SMA (17,48%). Sebagian besar jumlah sampel yang digunakan berada pada kisaran 31-60 orang (26,72%). Pengumpulan data banyak dilakukan melalui tes, wawancara, dan kuesioner. Sementara itu, analisis data paling banyak menggunakan statistik deskriptif, metode kualitatif, dan uji-t. Terdapat dua belas topik studi paling banyak diteliti di Indonesia, diantaranya; kemampuan matematis (27,23%), aplikasi teknologi (13,28%), dan proses kognitif (9,92%). Beberapa topik studi yang belum banyak berkembang di Indonesia yaitu filosofi dan sejarah pendidikan matematika, pembelajaran matematika anak usia dini, dan topik terkait multikultural, multilingual, dan kesetaraan dalam pendidikan matematika. Sementara itu, integrasi nilai-nilai Islam dalam pembelajaran matematika merupakan topik penelitian yang menjadi ciri khas di Indonesia. ","PeriodicalId":31758,"journal":{"name":"Beta Jurnal Tadris Matematika","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47836005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Muhamad Ali Misri, S. Saifuddin, Reza Oktiana Akbar, Nok Rini Kamelia
{"title":"Development and evaluation of a HOTS-based test for matrix topic: A classical test and item response theory","authors":"Muhamad Ali Misri, S. Saifuddin, Reza Oktiana Akbar, Nok Rini Kamelia","doi":"10.20414/betajtm.v14i2.383","DOIUrl":"https://doi.org/10.20414/betajtm.v14i2.383","url":null,"abstract":"[English]: This research aims to develop and evaluate a higher-order thinking skill (HOTS)-based test for a matrix topic. The development was carried out in two stages; items development and validation. The first stage was to review relevant literature about HOTS, design the test items, have experts review, and try out the items. Fifty-one upper secondary school students were involved in the tryout. In the second stage, results of the tryout were validated referring to the classical test and item response theory, including items characteristics, validity and reliability, items discrimination, and difficulty levels. The validation resulted in five valid test items (r1=0,54; r2=0,88; r3=0,72; r4=0,78; r5=0,82). The developed test represents the topic, fulfills HOTS criteria, is reliable rα=0,85, can differentiate students with higher-order thinking, and has varied difficulty levels.\u0000[Bahasa]: Penelitian ini bertujuan untuk mengembangkan dan mengevaluasi soal tes berbasis keterampilan berpikir tingkat tinggi (HOTS) pada materi matriks. Pengembangan instrumen tes melalui dua tahap, yaitu pengembangan draf soal dan validasi. Pada tahap pertama, dilakukan kajian literatur yang relevan, penyusunan rencana butir soal, evaluasi butir soal yang diusulkan, dan uji coba draf butir soal. Sebanyak 51 siswa sekolah menengah dilibatkan pada tahapan uji coba. Pada tahap validasi, dilakukan analisis menggunakan teori tes klasik dan teori respon butir mencakup: karakterisasi, validitas dan reliabilitas, uji daya beda, dan tingkat kesulitan soal. Penelitian ini menghasilkan lima butir soal yang valid (r1=0,54; r2=0,88; r3=0,72; r4=0,78; r5=0,82). Tes yang dikembangkan mewakili materi matriks, memenuhi kriteria HOTS, dapat diandalkan dengan nilai reliabilitas tes sebesar rα=0,85, dapat membedakan siswa yang memiliki kemampuan berpikir tingkat tinggi, dan memiliki keragaman tingkat kesulitan.","PeriodicalId":31758,"journal":{"name":"Beta Jurnal Tadris Matematika","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44912943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}