FlatChem最新文献

筛选
英文 中文
Tuning of fluorescence in titanium carbide MXene nanosheets with La3+ ion doping for the recognition of creatinine biomarker in biofluids 用 La3+ 离子掺杂调谐碳化钛 MXene 纳米片的荧光,以识别生物流体中的肌酐生物标记物
IF 5.9 3区 材料科学
FlatChem Pub Date : 2024-07-26 DOI: 10.1016/j.flatc.2024.100719
Dharaben J. Joshi , Sanjay Jha , Naved I. Malek , Tae Jung Park , Suresh Kumar Kailasa
{"title":"Tuning of fluorescence in titanium carbide MXene nanosheets with La3+ ion doping for the recognition of creatinine biomarker in biofluids","authors":"Dharaben J. Joshi ,&nbsp;Sanjay Jha ,&nbsp;Naved I. Malek ,&nbsp;Tae Jung Park ,&nbsp;Suresh Kumar Kailasa","doi":"10.1016/j.flatc.2024.100719","DOIUrl":"10.1016/j.flatc.2024.100719","url":null,"abstract":"<div><p>There is a strong correlation between the concentration of creatinine in human urine and the overall health of the kidneys. Therefore, there has been a persistent need for a rapid, and cost-effective quantitative method to assay creatinine levels in urine. Herein, green fluorescent La<sup>3+</sup> doped titanium carbide nanosheets (La<sup>3+</sup>-doped Ti<sub>3</sub>C<sub>2</sub> NSs) are fabricated via HF etching method by using Ti<sub>3</sub>AlC<sub>2</sub> as MAX phase material and La(NO<sub>3</sub>)<sub>3</sub> as a doping agent. As synthesized fluorescent La<sup>3+</sup>-doped Ti<sub>3</sub>C<sub>2</sub> NSs are stable, showing green fluorescence under UV light. The as-synthesized La<sup>3+</sup>-doped Ti<sub>3</sub>C<sub>2</sub> NSs act as a fluorescent sensor for the sensitive recognition of creatinine biomarker. The La<sup>3+</sup>-doped Ti<sub>3</sub>C<sub>2</sub> NSs-based fluorescence method showed a fluorescence quenching at emission wavelength 518 nm towards creatinine with a linear range of 0.25–7.5 μM and detection limit of 63.44 nM. The paper strip based on La<sup>3+</sup>-doped Ti<sub>3</sub>C<sub>2</sub> NSs was developed for the visual identification of creatinine. Furthermore, La<sup>3+</sup>-doped Ti<sub>3</sub>C<sub>2</sub> NSs were used as probes for imaging of <em>Saccharomyces cerevisiae</em> cells. Also, the as-fabricated La<sup>3+</sup>-doped Ti<sub>3</sub>C<sub>2</sub> NSs propose a quick response giving a cost-effective analytical strategy for the selective assay of creatinine in biofluids (plasma and urine).</p></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"47 ","pages":"Article 100719"},"PeriodicalIF":5.9,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141845768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Boosting the built-in electric field in heterojunctions of 2D and 3D systems to accelerate the separation and transfer of photogenerated carriers for efficient photocatalysis 增强二维和三维系统异质结中的内置电场,加速光生载流子的分离和转移,实现高效光催化
IF 5.9 3区 材料科学
FlatChem Pub Date : 2024-07-26 DOI: 10.1016/j.flatc.2024.100718
Song Li , Yanhong Lyu , Jianyun Zheng , Zdenek Sofer , Huaijuan Zhou
{"title":"Boosting the built-in electric field in heterojunctions of 2D and 3D systems to accelerate the separation and transfer of photogenerated carriers for efficient photocatalysis","authors":"Song Li ,&nbsp;Yanhong Lyu ,&nbsp;Jianyun Zheng ,&nbsp;Zdenek Sofer ,&nbsp;Huaijuan Zhou","doi":"10.1016/j.flatc.2024.100718","DOIUrl":"10.1016/j.flatc.2024.100718","url":null,"abstract":"<div><p>Inhibiting the rapid recombination of photogenerated carriers has been a serious challenge to improve photocatalytic efficiency. Constructing and boosting the built-in electric field in photocatalysts of 2D and 3D systems can effectively promote the separation and transfer of photogenerated charge carriers. Herein, we systematically summarize the construction principle, characterization methods about the direction and intensity of the built-in electric field, and several strategies to boost the built-in electric field including structure optimization, phase modulation, vacancy defects engineering, doping strategies, construction of charge transfer mediators. It is worth noting that the uneven charge distribution in the material (or differences in the position of the Fermi level) is a key issue in the construction and enhancement of built-in electric field. Finally, the application of the built-in electric field in photocatalytic water splitting, carbon dioxide reduction, nitrogen fixation and pollutant degradation are described. This review highlights a comprehensive understanding of the mechanism of built-in electric field in photocatalysis and offers some insights into the design and modification of photocatalysts for different applications.</p></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"47 ","pages":"Article 100718"},"PeriodicalIF":5.9,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141849240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0D/2D Schottky heterojunction of CsPbBr3 nanocrystals on MoN nanosheets for enhancing charge transfer and CO2 photoreduction 氮化镧系元素纳米片上的 0D/2D 肖特基异质结 CsPbBr3 纳米晶体用于增强电荷转移和二氧化碳光电还原
IF 5.9 3区 材料科学
FlatChem Pub Date : 2024-07-26 DOI: 10.1016/j.flatc.2024.100720
Yuanming Hou , Xiaocheng Song , Yanqing Zhang , Tingting Ren , Jiaxin Wang , Jingyi Qin , Jianjun Yang , Zhengzheng Xie , Zhihong Tian , Zhongjie Guan , Xianwei Fu , Shilong Jiao , Qiuye Li , Erling Li
{"title":"0D/2D Schottky heterojunction of CsPbBr3 nanocrystals on MoN nanosheets for enhancing charge transfer and CO2 photoreduction","authors":"Yuanming Hou ,&nbsp;Xiaocheng Song ,&nbsp;Yanqing Zhang ,&nbsp;Tingting Ren ,&nbsp;Jiaxin Wang ,&nbsp;Jingyi Qin ,&nbsp;Jianjun Yang ,&nbsp;Zhengzheng Xie ,&nbsp;Zhihong Tian ,&nbsp;Zhongjie Guan ,&nbsp;Xianwei Fu ,&nbsp;Shilong Jiao ,&nbsp;Qiuye Li ,&nbsp;Erling Li","doi":"10.1016/j.flatc.2024.100720","DOIUrl":"10.1016/j.flatc.2024.100720","url":null,"abstract":"<div><p>Solar-driven conversion of CO<sub>2</sub> to value-added chemical fuels has been regarded as a promising strategy for solving the climate problem and energy crisis. To realize this goal, it is vital to design photocatalysts with abundant catalytic active sites and excellent charge separation efficiency. Here, perovskite nanocrystals (CsPbBr<sub>3</sub>) were anchored on two-dimensional molybdenum nitride (MoN) using an in-situ growth method, forming a new and effective 0D/2D CsPbBr<sub>3</sub>@MoN (CPB@MoN) nanoheterosturcture with close contact interface for CO<sub>2</sub> photoreduction. The introduction of MoN, acting as a charge transfer channel, could quickly trap the photoinduced charge from CsPbBr<sub>3</sub> and provide abundant catalytic sites for CO<sub>2</sub> photocatalytic reactions. For optimized CsPbBr<sub>3</sub>@MoN composites, the CO yield was 13.86μmol/gh<sup>−1</sup> without any sacrificial reagent, which was a 4.5-fold enhancement of the pure CsPbBr<sub>3</sub>. Further, in-situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) revealed the catalytic mechanism for the CO<sub>2</sub> photoreduction process. This work provides a new platform for constructing superior perovskite/MoN-based photocatalysts for photocatalytic CO<sub>2</sub> reduction.</p></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"47 ","pages":"Article 100720"},"PeriodicalIF":5.9,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141948777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Copper oxide/graphene-based composites: Synthesis methods, appliances and recent advancements 氧化铜/石墨烯基复合材料:合成方法、设备和最新进展
IF 5.9 3区 材料科学
FlatChem Pub Date : 2024-07-20 DOI: 10.1016/j.flatc.2024.100716
Majid Zomorodian Esfahani , Elham Soroush , Sama Mohammadnejad , Motahareh Helli , Adrine Malek Khachatourian , Muhammet S. Toprak , Rajender S. Varma
{"title":"Copper oxide/graphene-based composites: Synthesis methods, appliances and recent advancements","authors":"Majid Zomorodian Esfahani ,&nbsp;Elham Soroush ,&nbsp;Sama Mohammadnejad ,&nbsp;Motahareh Helli ,&nbsp;Adrine Malek Khachatourian ,&nbsp;Muhammet S. Toprak ,&nbsp;Rajender S. Varma","doi":"10.1016/j.flatc.2024.100716","DOIUrl":"10.1016/j.flatc.2024.100716","url":null,"abstract":"<div><p>Nanomaterials adorned on graphene comprise an essential component of a wide range of devices wherein graphene-based copper oxide nanocomposites have garnered significant attention in recent years. Copper oxides (CuO and Cu<sub>2</sub>O) are semiconductors with distinctive optical, electrical, and magnetic properties. Their earth abundance, low cost, narrow bandgap, high absorption coefficient, and low toxicity of copper oxides are just a few key advantages. CuO is superior to Cu<sub>2</sub>O in optical switching applications because of its narrower bandgap. Therefore, integrating graphene with copper oxides renders the ensuing nanocomposites much more valuable for various applications. Not surprisingly, a wide range of promising synthesis and processing techniques have been considered, focusing on multiple appliances such as sensors, energy storage, harvesting, and electrocatalysis. Herein, the most recent synthesis techniques and applications of doped, undoped, and hierarchical structures of CuO/Cu<sub>2</sub>O-graphene-based nanocomposites are deliberated, including the potential future usages.</p></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"47 ","pages":"Article 100716"},"PeriodicalIF":5.9,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141850626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing device performance and stability of lead-free quasi-2D halide perovskite supercapacitor through Ag+/Bi3+ cation interaction 通过 Ag+/Bi3+阳离子相互作用提高无铅准二维卤化物包光体超级电容器的器件性能和稳定性
IF 5.9 3区 材料科学
FlatChem Pub Date : 2024-07-18 DOI: 10.1016/j.flatc.2024.100717
Ankur Yadav , Ankit Kumar , Monojit Bag
{"title":"Enhancing device performance and stability of lead-free quasi-2D halide perovskite supercapacitor through Ag+/Bi3+ cation interaction","authors":"Ankur Yadav ,&nbsp;Ankit Kumar ,&nbsp;Monojit Bag","doi":"10.1016/j.flatc.2024.100717","DOIUrl":"10.1016/j.flatc.2024.100717","url":null,"abstract":"<div><p>Compared to their three-dimensional (3D) counterparts, low-dimensional layered perovskite (2D) structures using bulky organic ammonium cations (PEA<sup>+</sup>) have significantly improved stability but generally worse performance. 3D perovskites with significant ion migration, one of the major concerns for structural instability, show better charge storage capacity. In contrast, strong van der Waals contacts and bulky spacer ligands in 2D perovskites inhibit the migration of halide ions. Mixed properties of 2D and 3D or quasi-2D layered perovskite demonstrate more efficient, tuneable optoelectronic properties and long-term stability. The performance and stability of the electrochemical supercapacitor may be significantly influenced by ion migration, as we have shown by fabricating porous electrodes from 3D-Cs<sub>2</sub>AgBiBr<sub>6</sub> bulk perovskite, 2D/3D or quasi-2D PEA-Cs<sub>2</sub>AgBiBr<sub>6</sub>, and layered perovskite 2D PEA<sub>4</sub>AgBiBr<sub>8</sub>. The quasi-2D electrodes were found to have an energy density ∼1.75 times higher than the 3D perovskite electrodes and ∼4.5 times higher than that of pure 2D halide electrodes. Compared to 2D and 3D electrodes, quasi-2D has a maximum capacitance retention of around 93 % after 2000 operation cycles. Ex-situ X-ray diffraction was conducted to examine further structural changes in the quasi-2D, 2D, and 3D perovskite electrode materials. It was determined that the ordering arrangement of Ag<sup>+</sup>/Bi<sup>3+</sup> cation improves the crystallinity of the structure, which enhances the device performance and stability of the quasi-2D electrode. Also, Ag<sup>3+</sup> is essential for improving the strength of quasi-2D and 2D electrodes, as evidenced by X-ray photoelectron spectroscopy (XPS). A symmetric solid-state supercapacitor was fabricated and analyzed using a two-electrode method, demonstrating that the quasi-2D configuration has the highest energy density compared to the pure 2D and 3D perovskite electrode materials.</p></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"47 ","pages":"Article 100717"},"PeriodicalIF":5.9,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141848657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NbS2/Ti2CS2 heterostructure with excellent rate and storage performance as an anode material for Li/Na/K ion batteries: A first-principles calculation 具有优异速率和存储性能的 NbS2/Ti2CS2 异质结构可用作锂/纳/钾离子电池的负极材料:第一原理计算
IF 5.9 3区 材料科学
FlatChem Pub Date : 2024-07-18 DOI: 10.1016/j.flatc.2024.100712
Zhongyong Zhang , Xian Yuan , Yifan Wu , Wenjing Ji , Yuntong Peng , Naigen Zhou , Shangquan Zhao
{"title":"NbS2/Ti2CS2 heterostructure with excellent rate and storage performance as an anode material for Li/Na/K ion batteries: A first-principles calculation","authors":"Zhongyong Zhang ,&nbsp;Xian Yuan ,&nbsp;Yifan Wu ,&nbsp;Wenjing Ji ,&nbsp;Yuntong Peng ,&nbsp;Naigen Zhou ,&nbsp;Shangquan Zhao","doi":"10.1016/j.flatc.2024.100712","DOIUrl":"10.1016/j.flatc.2024.100712","url":null,"abstract":"<div><p>The limited specific capacity of graphite anodes constrains the advancement of lithium-ion batteries (LIBs), sodium-ion batteries (NIBs), and potassium-ion batteries (KIBs). To address this, we have explored the potential of van der Waals heterostructures for high-performance anode materials. Specifically, we designed and analyzed the NbS<sub>2</sub>/Ti<sub>2</sub>CS<sub>2</sub> heterostructure through first-principles calculations. This heterostructure demonstrates superior thermal stability and metallic conductivity. Furthermore, it allows for the stable adsorption of Li/Na/K atoms, indicating strong interactions that are advantageous for battery applications. Notably, the Li/Na/K ion diffusion barriers on NbS<sub>2</sub>/Ti<sub>2</sub>CS<sub>2</sub> are lower compared to other anodes, enhancing ion mobility. The average open-circuit voltages (OCVs) for NbS<sub>2</sub>/Ti<sub>2</sub>CS<sub>2</sub> as an anode in NIBs/KIBs range from 0 to 1 V, with a remarkable specific capacity of 489 mAh/g for NIBs. These findings position NbS<sub>2</sub>/Ti<sub>2</sub>CS<sub>2</sub> as an exceptional candidate for next-generation battery anodes, potentially revolutionizing the LIB/NIB/KIB landscape. Our research contributes to the ongoing development of advanced anode materials, offering new pathways for enhancing battery performance.</p></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"47 ","pages":"Article 100712"},"PeriodicalIF":5.9,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141840333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Graphene encapsulated Fe-based nanoparticles synthesized from iron(II) sulfate heptahydrate containing precursors: Influence of chemical vapor deposition parameters 用含七水硫酸铁(II)的前驱体合成的石墨烯封装铁基纳米粒子:化学气相沉积参数的影响
IF 5.9 3区 材料科学
FlatChem Pub Date : 2024-07-14 DOI: 10.1016/j.flatc.2024.100714
Sıddıka Mertdinç-Ülküseven , Derya Demirbaş , Frederik Winkelmann , Michael Felderhoff , M. Lütfi Öveçoğlu , Duygu Ağaoğulları
{"title":"Graphene encapsulated Fe-based nanoparticles synthesized from iron(II) sulfate heptahydrate containing precursors: Influence of chemical vapor deposition parameters","authors":"Sıddıka Mertdinç-Ülküseven ,&nbsp;Derya Demirbaş ,&nbsp;Frederik Winkelmann ,&nbsp;Michael Felderhoff ,&nbsp;M. Lütfi Öveçoğlu ,&nbsp;Duygu Ağaoğulları","doi":"10.1016/j.flatc.2024.100714","DOIUrl":"10.1016/j.flatc.2024.100714","url":null,"abstract":"<div><p>Importance of process parameters on thermal, microstructural, and magnetic properties of synthesized core/shell nanoparticles was investigated during their production via chemical vapor deposition (CVD). Herein, iron(II) sulfate heptahydrate and fumed silica powders were mixed in ethanol, and the solution was used for precursor preparation by utilizing spray dryer. These prepared precursors were treated in the CVD process under methane/hydrogen (CH<sub>4</sub>/H<sub>2</sub>) gas flow to synthesize graphene-encapsulated core/shell nanoparticles. CVD studies were performed at various temperatures (900–1000 °C), holding times (60, 90 min), and gas flow rates (100, 200 mL/min). After CVD studies, purification was applied to remove uncoated nanoparticles, and remaining fumed silica phases originated from the precursor via selective acid leaching using hydrofloric acid (HF) and hydrochloric acid (HCl) solutions. X-ray diffractometry, Raman and Mössbauer spectroscopy, Zeta potential measurement, thermogravimetry combined with differential scanning calorimetry, scanning and transmission electron microscopy/energy-dispersive spectroscopy, and vibrating sample magnetometry (VSM) results yielded the optimized CVD parameters as 950 °C, 60 min, CH<sub>4</sub>/H<sub>2</sub>: 1/1 and 50 mbar. The characterization results proved that multilayer graphene (d-spacing: 0.34 nm) encapsulated Fe/Fe<sub>3</sub>C nanoparticles (average core size: ∼46.9 nm, shell thickness: ∼16.6 nm) can be successfully synthesized by using CVD process followed by a leaching treatment. VSM results revealed that synthesized nanoparticles had soft ferromagnetic properties (M<sub>s</sub>: 90.6–185 emu/g; H<sub>c</sub>: 255.4–301.6 Oe). Characterization results deepen the understanding of process parameters of CVD system on characteristics of core/shell nanoparticles.</p></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"47 ","pages":"Article 100714"},"PeriodicalIF":5.9,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141705071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrochemical functionalization of graphene nanosheets with iodoacetic acid towards supercapacitor electrodes 用碘乙酸对石墨烯纳米片进行电化学功能化,使其用于超级电容器电极
IF 5.9 3区 材料科学
FlatChem Pub Date : 2024-07-14 DOI: 10.1016/j.flatc.2024.100710
Sergio García-Dalí, Daniel F. Carrasco, Silvia Villar-Rodil, Juan I. Paredes, Juan M.D. Tascón
{"title":"Electrochemical functionalization of graphene nanosheets with iodoacetic acid towards supercapacitor electrodes","authors":"Sergio García-Dalí,&nbsp;Daniel F. Carrasco,&nbsp;Silvia Villar-Rodil,&nbsp;Juan I. Paredes,&nbsp;Juan M.D. Tascón","doi":"10.1016/j.flatc.2024.100710","DOIUrl":"10.1016/j.flatc.2024.100710","url":null,"abstract":"<div><p>Graphene nanosheets show great potential as electrode materials for supercapacitors due to their high surface area and excellent electrical conductivity. However, the low hydrophilicity of graphene nanosheets limits their electrochemical performance in aqueous supercapacitor applications. To enhance their electrochemical performance, we investigate the use of iodoacetic acid as an electrolytic functionalization agent for graphene nanosheets. Here, we demonstrate the successful electrolytic functionalization of graphene nanosheets under cathodic conditions in aqueous medium. The resulting material exhibits a high structural quality and carboxyl groups on the surface, which increases the hydrophilicity and wettability of the material. The applied voltage and the concentration of iodoacetic acid have been found to be key factors to optimize the process in order to get the maximum functionalization degree. The electrochemical performance demonstrates that iodoacetic acid functionalized graphene nanosheets exhibit significantly improved specific capacitance (220F/g at 0.5 A/g) and cycling stability of the symmetric cell compared to pristine graphene nanosheets, highlighting the potential of electrochemical functionalization to improve the performance of graphene-based materials in energy storage applications.</p></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"47 ","pages":"Article 100710"},"PeriodicalIF":5.9,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141622181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Insight into the role of nickel carbide nanoparticles in improving photocatalytic H2 generation over ZnIn2S4 under visible light 洞察碳化镍纳米颗粒在可见光条件下改善 ZnIn2S4 光催化产生 H2 的作用
IF 5.9 3区 材料科学
FlatChem Pub Date : 2024-07-14 DOI: 10.1016/j.flatc.2024.100711
Longfei Wang , Qingru Zeng , Yufeng Gan , Yuezhou Wei , Xinpeng Wang , Deqian Zeng
{"title":"Insight into the role of nickel carbide nanoparticles in improving photocatalytic H2 generation over ZnIn2S4 under visible light","authors":"Longfei Wang ,&nbsp;Qingru Zeng ,&nbsp;Yufeng Gan ,&nbsp;Yuezhou Wei ,&nbsp;Xinpeng Wang ,&nbsp;Deqian Zeng","doi":"10.1016/j.flatc.2024.100711","DOIUrl":"10.1016/j.flatc.2024.100711","url":null,"abstract":"<div><p>Zinc indium sulfide (ZnIn<sub>2</sub>S<sub>4</sub>) is a Cd-free semiconductor with great potential in various photocatalytic applications. However, its rapid photogenerated charge combination poses some challenges. Constructing ZnIn<sub>2</sub>S<sub>4</sub>-based heterojunction photocatalysts to address this has proven an effective solution. In this study, we loaded uniform Ni<sub>3</sub>C nanoparticles as cocatalysts on layered ZnIn<sub>2</sub>S<sub>4</sub> nanostructures to promote photocatalytic H<sub>2</sub> production activity. The optimal 3 % Ni<sub>3</sub>C/ZnIn<sub>2</sub>S<sub>4</sub> exhibited the highest H<sub>2</sub> generation rate of 393 μmol·g<sup>−1</sup>·h<sup>−1</sup>, 4.5 times greater than pure ZnIn<sub>2</sub>S<sub>4</sub>. The enhanced photocatalytic performance was ascribed to the incorporation of metallic Ni<sub>3</sub>C, which provides more catalytically active sites and establishes electron transfer channels at the interfaces, facilitating the photogenerated carrier separation and H<sub>2</sub> production. The photocatalytic mechanism of Ni<sub>3</sub>C/ZnIn<sub>2</sub>S<sub>4</sub> was proposed through experimental measurements and DFT calculations. This study offers a way to develop efficient ZnIn<sub>2</sub>S<sub>4</sub>-based visible-light-driven photocatalysts.</p></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"47 ","pages":"Article 100711"},"PeriodicalIF":5.9,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141622180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of bonding variance on electron affinity in graphene quantum dot-barium titanate nanocomposites for drug delivery system 用于药物输送系统的石墨烯量子点-钛酸钡纳米复合材料中键合差异对电子亲和力的影响
IF 5.9 3区 材料科学
FlatChem Pub Date : 2024-07-14 DOI: 10.1016/j.flatc.2024.100713
Jung-Hua Lin , Li Chen , Er-Chieh Cho , Kuen-Chan Lee
{"title":"Influence of bonding variance on electron affinity in graphene quantum dot-barium titanate nanocomposites for drug delivery system","authors":"Jung-Hua Lin ,&nbsp;Li Chen ,&nbsp;Er-Chieh Cho ,&nbsp;Kuen-Chan Lee","doi":"10.1016/j.flatc.2024.100713","DOIUrl":"10.1016/j.flatc.2024.100713","url":null,"abstract":"<div><p>Although chemotherapy remains a prevalent option in cancer treatment, its adverse effects on normal cells and suboptimal pharmacokinetics often limits its effectiveness. To address these challenges, this study successfully developed a new multifunctional drug delivery system comprising a covalent composite of graphene quantum dots and barium titanate nanoparticles. Notably, despite numerous reports on the surface modification of graphene quantum dots, studies focusing on cancer cell inhibition via different covalent bonds are scarce. To bridge this gap, this system was synthesized using eco-friendly esterification and amidation pathways. The anticancer drug doxorubicin was employed as a model drug, and hyaluronic acid was used to encapsulate the delivery system, enhancing its sustained release capabilities. Comprehensive material characterization confirmed the successful synthesis of the system. Its high drug loading capacity and acid-sensitive release can be attributed to the unique structure of the graphene quantum dots. Subsequent <em>in vitro</em> and <em>in vivo</em> biological evaluations not only demonstrated the system’s remarkable cancer inhibition efficacy but also accentuated the distinct impacts of the two bonding types. The underlying mechanism is believed to involve bonding affinity and electron transfer, findings that are corroborated by the experimental data. Additionally, results from animal models provide clear evidence for the potential application of this system (HA-DOX-GQD@BTNPs) in cancer therapeutics and imaging. In conclusion, this research elucidates the variances in drug carrier efficacy based on different covalent bond modifications for cancer treatment and introduces a novel drug delivery system that synergistically combines imaging and targeting capabilities.</p></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"47 ","pages":"Article 100713"},"PeriodicalIF":5.9,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141715796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信