FlatChem最新文献

筛选
英文 中文
NiMn layered double hydroxides with promoted surface defects as bifunctional electrocatalysts for rechargeable zinc–air batteries 具有促进表面缺陷的镍锰层状双氢氧化物作为可充电锌-空气电池的双功能电催化剂
IF 6.2 3区 材料科学
FlatChem Pub Date : 2024-04-24 DOI: 10.1016/j.flatc.2024.100664
Oscar Ambriz-Peláez , José Béjar , Anabel D. Delgado , Claramaría Rodríguez-González , C.M. Ramos-Castillo , Lorena Álvarez-Contreras , Minerva Guerra-Balcázar , Noé Arjona
{"title":"NiMn layered double hydroxides with promoted surface defects as bifunctional electrocatalysts for rechargeable zinc–air batteries","authors":"Oscar Ambriz-Peláez ,&nbsp;José Béjar ,&nbsp;Anabel D. Delgado ,&nbsp;Claramaría Rodríguez-González ,&nbsp;C.M. Ramos-Castillo ,&nbsp;Lorena Álvarez-Contreras ,&nbsp;Minerva Guerra-Balcázar ,&nbsp;Noé Arjona","doi":"10.1016/j.flatc.2024.100664","DOIUrl":"https://doi.org/10.1016/j.flatc.2024.100664","url":null,"abstract":"<div><p>Layered double hydroxides (LDHs) are attractive bidimensional materials for electrochemical applications because of their high activity in the oxygen evolution reaction (OER). However, their limited bifunctionality due to the slow kinetics of the oxygen reduction reaction (ORR) is a bottleneck for their use in secondary Zn-air batteries (ZABs). In this work, cobalt-free NiMn LDHs were rationally designed by optimizing the Ni composition and incorporating surface defects onto the LDH (oxygen vacancies, O<em>v</em>) while performing interface engineering using a carbonaceous support enriched with nitrogen heteroatoms. The LDHs without induced defects presented the optimal activity for the OER at a 3:1 Ni/Mn atomic ratio (onset potential 1.47 V <em>vs</em>. 1.45 V for IrO<sub>2</sub>/C), while the ORR was unfavorable. However, the further optimization by introducing O<em>v</em> and N–heteroatoms (labeled as O<em>v</em>-NiMn LDH/NCNTG) allowed bifunctionality by improving the onset potential to 0.90 V while decreasing the half-wave potential difference from 180 mV for the material without induced defects to 100 mV, and by improving the limiting current density by a factor of two. In this regard, density of states (DOS) calculations suggested that surface defects improved the electronic transfer while decreasing the oxygen adsorption energy. ZAB tests indicated that the interface-engineered material allowed a battery voltage of 1.47 V, and a power density of 64 mW cm<sup>−2</sup>. The battery also maintained stability over 180 charge/discharge cycles at 10 mA cm<sup>−2</sup> (50 h), with ΔV below 150 mV between the initial and final cycles.</p></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"45 ","pages":"Article 100664"},"PeriodicalIF":6.2,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140643866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modification of graphene-based nanomaterials with gamma irradiation as an eco-friendly approach for diverse applications: A review 利用伽马辐照对石墨烯基纳米材料进行改性,将其作为一种生态友好型方法用于多种应用:综述
IF 6.2 3区 材料科学
FlatChem Pub Date : 2024-04-21 DOI: 10.1016/j.flatc.2024.100662
Nkosingiphile E. Zikalala , Shohreh Azizi , Force T. Thema , Karen J. Cloete , Ali.A. Zinatizadeh , Touhami Mokrani , Nomvano Mketo , Malik M. Maaza
{"title":"Modification of graphene-based nanomaterials with gamma irradiation as an eco-friendly approach for diverse applications: A review","authors":"Nkosingiphile E. Zikalala ,&nbsp;Shohreh Azizi ,&nbsp;Force T. Thema ,&nbsp;Karen J. Cloete ,&nbsp;Ali.A. Zinatizadeh ,&nbsp;Touhami Mokrani ,&nbsp;Nomvano Mketo ,&nbsp;Malik M. Maaza","doi":"10.1016/j.flatc.2024.100662","DOIUrl":"https://doi.org/10.1016/j.flatc.2024.100662","url":null,"abstract":"<div><p>Graphene-based nanomaterials (GBNMs) are versatile due to their large surface area, great mechanical, chemical strength, and excellent electrical properties. The versatility of graphene has increased its applicability therefore several synthesis methods to produce high quality graphene simpler, faster, and cost-effectively are actively explored. The conventional synthesis methods however employ toxic chemicals, high temperatures, and lengthy synthesis times. On the other hand, the gamma (γ) irradiation approach is facile, occurs under ambient conditions and produces graphene composites of high purity. Noteworthy, this technique enables the user to control the synthesis time and total dose, hence minimising the aggregation of the nanomaterial, the main drawback hindering the commercial production of GBNMs. γ-radiolysis synthesized GBNMs exhibit superior optical and electrical properties and hence improved supercapacitance, catalytic, and sensing abilities. Although other reviews addressed the γ-ray synthesis of metallic nanomaterials, polymers, as well as usage of a variety of radiation techniques to fabricate graphene composites, this review focuses solely on the synthesis and modifications of GBNMs via the γ-synthesis technique. Properties of graphene and conventional methods used to reduce graphene oxide (GO) to graphene as well as their shortcomings are highlighted. This is followed by detailing the γ-radiation synthesis technique, its advantages over the conventional methods and the principles thereof. Effects of γ-irradiation and the conditions required for the structural modification of graphene to obtain different graphene composites are detailed. The influence of operational parameters on the fabricated graphene-based composites are discussed followed by summaries of recent developments in the applicability of γ-irradiated GBNMs in catalysis, energy, sensing, and biomedical fields. In addition, this paper presents insights into the challenges posed and provides future research directions and prospects in the field of γ-irradiated GBNMs.</p></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"45 ","pages":"Article 100662"},"PeriodicalIF":6.2,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140646820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
FeNC with atomically dispersed iron atoms as a photosensitizer for combined photodynamic and photothermal therapy 含有原子分散铁原子的 FeNC 作为光敏剂用于光动力和光热联合疗法
IF 6.2 3区 材料科学
FlatChem Pub Date : 2024-04-20 DOI: 10.1016/j.flatc.2024.100663
Dan Li , Mengyao Zhang , Yudai Huang , Xin Hu , Junqing Hu
{"title":"FeNC with atomically dispersed iron atoms as a photosensitizer for combined photodynamic and photothermal therapy","authors":"Dan Li ,&nbsp;Mengyao Zhang ,&nbsp;Yudai Huang ,&nbsp;Xin Hu ,&nbsp;Junqing Hu","doi":"10.1016/j.flatc.2024.100663","DOIUrl":"https://doi.org/10.1016/j.flatc.2024.100663","url":null,"abstract":"<div><p>This research explores the efficacy of photodynamic therapy (PDT) and photothermal therapy (PTT) in combating chemotherapy-resistant diseases. This study focuses on enhancing tumor treatment effectiveness by leveraging the synergetic effects of combining PDT and PTT through the development of Fe-nitrogen-carbon (FeNC) nanoparticles with superior photostability. These nanoparticles, functioning as photosensitizers for the combined PDT/PTT treatment, can generate both type I and type II ROS and heat upon 808 nm irradiation. Notably, the FeNC nanoparticles demonstrate an exceptional photothermal conversion efficiency (34 %), surpassing commonly used PTT photosensitizers. <em>In vitro</em> and <em>in vivo</em> experiments corroborate the efficiency of FeNC as a photosensitizer in achieving significant tumor inhibition. In conclusion, the FeNC nanoparticles present promising applicability in the synergistic PTT/PDT treatment of tumors.</p></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"45 ","pages":"Article 100663"},"PeriodicalIF":6.2,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140633318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Platinum-decorated graphene: Experimental insight into growth mechanisms and hydrogen adsorption properties 铂装饰石墨烯:生长机制和氢吸附特性的实验启示
IF 6.2 3区 材料科学
FlatChem Pub Date : 2024-04-19 DOI: 10.1016/j.flatc.2024.100661
Letizia Ferbel , Stefano Veronesi , Ylea Vlamidis , Antonio Rossi , Leonardo Sabattini , Camilla Coletti , Stefan Heun
{"title":"Platinum-decorated graphene: Experimental insight into growth mechanisms and hydrogen adsorption properties","authors":"Letizia Ferbel ,&nbsp;Stefano Veronesi ,&nbsp;Ylea Vlamidis ,&nbsp;Antonio Rossi ,&nbsp;Leonardo Sabattini ,&nbsp;Camilla Coletti ,&nbsp;Stefan Heun","doi":"10.1016/j.flatc.2024.100661","DOIUrl":"https://doi.org/10.1016/j.flatc.2024.100661","url":null,"abstract":"<div><p>Pt-functionalized graphene shows promise for near-ambient hydrogen storage due to graphene’s potential as a hydrogen host and platinum’s role as a catalyst for the hydrogen evolution reaction and spillover effect. This study explores Pt cluster formation on epitaxial graphene and its suitability for hydrogen storage. Scanning Tunneling Microscopy reveals two growth pathways. Initially, up to <span><math><mrow><mo>∼</mo></mrow></math></span>1 monolayer of Pt coverage, Pt tends to randomly disperse and cover the graphene surface, whereas the cluster height remains unchanged. Beyond a coverage of 3 monolayer, the nucleation of new layers on existing clusters becomes predominant, and the clusters mainly grow in height. Thermal Desorption Spectroscopy on hydrogenated Pt-decorated graphene reveals the presence of multiple hydrogen adsorption mechanisms. Two Gaussian peaks, which we attribute to hydrogen physisorbed (peak at 155°C) and chemisorbed (peak at 430°C) on the surface of Pt clusters are superimoposed on a linearly increasing background assigned to hydrogen bonded in the bulk of the Pt clusters. These measurements demonstrate the ability of Pt-functionalized graphene to store molecular hydrogen at temperatures that are high enough for stable hydrogen binding at room temperature.</p></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"45 ","pages":"Article 100661"},"PeriodicalIF":6.2,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2452262724000552/pdfft?md5=472ae0618a61fc47fe2dc18628bb47a1&pid=1-s2.0-S2452262724000552-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140633319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mo-doped NiCoP nanoplates with amorphous/crystalline heterostructure for efficient alkaline overall water splitting 具有非晶/晶体异质结构的掺钼镍钴磷纳米板用于高效碱性整体水分离
IF 6.2 3区 材料科学
FlatChem Pub Date : 2024-04-18 DOI: 10.1016/j.flatc.2024.100660
Xiuwen Wang , Miao Yu , Chunmei Lv , Liyan Wang , Wei Kan , Guang Xu , Li Sun , Bing Zhao
{"title":"Mo-doped NiCoP nanoplates with amorphous/crystalline heterostructure for efficient alkaline overall water splitting","authors":"Xiuwen Wang ,&nbsp;Miao Yu ,&nbsp;Chunmei Lv ,&nbsp;Liyan Wang ,&nbsp;Wei Kan ,&nbsp;Guang Xu ,&nbsp;Li Sun ,&nbsp;Bing Zhao","doi":"10.1016/j.flatc.2024.100660","DOIUrl":"https://doi.org/10.1016/j.flatc.2024.100660","url":null,"abstract":"<div><p>Developing highly active, low-cost, and robust transition metal-based phosphide for alkaline overall water splitting is of utmost important to promote the practical application from fundamental. Herein, two-dimensional (2D) Mo-doped NiCoP nanoplates with novel amorphous/crystalline heterostructure (Mo(0.05)-NiCoP) in situ grown on three-dimensional nickel foam (NF) has been successfully constructed through hydrothermal reaction followed by the phosphorization treatment. Benefited from the synergy of amorphous/crystalline heterointerface, Mo doping, and unique 2D structure, the optimized Mo(0.05)-NiCoP exhibits outstanding electrocatalytic activity for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), achieving low overpotential of 67 mV at 10 mA cm<sup>−2</sup> for HER and 233 mV at 10 mA cm<sup>−2</sup> for OER. Meanwhile, there are only a cell voltage of 1.569 V was required to drive 10 mA cm<sup>−2</sup> when Mo(0.05)-NiCoP used as both anode and cathode for overall water splitting. Thus, this study provides a novel approach to construct efficient 2D bifunctional catalysts with amorphous/crystalline heterostructure and heterogeneous metal doping.</p></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"45 ","pages":"Article 100660"},"PeriodicalIF":6.2,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140633320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emergence of enhanced photocatalytic response in GO-hBN nanocomposites with tuned non-linear optical and surface electronic properties 具有可调非线性光学和表面电子特性的 GO-hBN 纳米复合材料可增强光催化响应
IF 6.2 3区 材料科学
FlatChem Pub Date : 2024-04-16 DOI: 10.1016/j.flatc.2024.100659
Vidyotma Yadav , Manoj Kumar Kumawat , Shivam Tiwari , Arun Kumar Singh , Tanuja Mohanty
{"title":"Emergence of enhanced photocatalytic response in GO-hBN nanocomposites with tuned non-linear optical and surface electronic properties","authors":"Vidyotma Yadav ,&nbsp;Manoj Kumar Kumawat ,&nbsp;Shivam Tiwari ,&nbsp;Arun Kumar Singh ,&nbsp;Tanuja Mohanty","doi":"10.1016/j.flatc.2024.100659","DOIUrl":"https://doi.org/10.1016/j.flatc.2024.100659","url":null,"abstract":"<div><p>The hexagonal Boron Nitride (hBN) nanostructures with tuned physicochemical properties find huge applications in optoelectronic devices<em>.</em> Herein, we have synthesized nanocomposite of hBN with graphene oxide (GO) in various ratios to acquire composition-dependent variation in their structural, surface electronic, linear, and non-linear optical properties. The insertion of GO in hBN nanosheets has modified their strain landscape, the electronic charge transfers from GO to hBN, increased the working time of free charge carriers, and suppressed electron-hole recombination, thus modifying its work function (WF). GO-hBN nanocomposites observed to have reduced bandgap where creation of defect induced mid-gap states lead to enhancement in non-linear absorption of two photons. Herein, we have established a linear relationship between Urbach energy (<em>E<sub>u</sub></em>), a measure of disorders and non-linear absorption coefficient (<em>α<sub>NL</sub></em>). Additionally, we have observed that the tuned bandgap of the nanocomposites has significantly enhanced their performance as high-performance photocatalysts for the degradation of methyl orange, compared to bare hBN or GO. As a result, we discovered that <em>E<sub>u</sub></em>, <em>α<sub>NL</sub></em>, WF and photodegradation activity of GO-hBN nanocomposites exhibit analogous variations in response to changes in the content of GO. Thus, by strategically prioritizing the modification of a single parameter while considering the potential effects on other relevant properties for application purpose, GO-hBN can effectively harness large spectrum areas for catalytic and optoelectronic applications.</p></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"45 ","pages":"Article 100659"},"PeriodicalIF":6.2,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140618744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent advances in applications of graphene-layered double hydroxide nanocomposites in supercapacitors and batteries 石墨烯层双氢氧化物纳米复合材料在超级电容器和电池中应用的最新进展
IF 6.2 3区 材料科学
FlatChem Pub Date : 2024-04-08 DOI: 10.1016/j.flatc.2024.100658
Mahdokht Jafari , Fatemeh Ganjali , Reza Eivazzadeh-Keihan , Ali Maleki , Shokoofeh Geranmayeh
{"title":"Recent advances in applications of graphene-layered double hydroxide nanocomposites in supercapacitors and batteries","authors":"Mahdokht Jafari ,&nbsp;Fatemeh Ganjali ,&nbsp;Reza Eivazzadeh-Keihan ,&nbsp;Ali Maleki ,&nbsp;Shokoofeh Geranmayeh","doi":"10.1016/j.flatc.2024.100658","DOIUrl":"https://doi.org/10.1016/j.flatc.2024.100658","url":null,"abstract":"<div><p>Highly determined materials have been applied to energy storage devices such as supercapacitors, batteries, etc., to investigate their electrochemical features and match them with ongoing technological developments. In this regard, electrodes based on graphene and layered double hydroxide with two divergent charge-storage mechanisms have been perused to expand the energy storage functionalities. Graphene materials as efficient electrodes have occupied a significant place in supercapacitors and batteries due to their outstanding electrical conductivity, flexibility, and large surface area. Additionally, according to the substantial electrochemical charge transport capabilities, layered double hydroxides are extensively employed in energy storage devices. This review comprehensively investigates the cooperation effect of the electrode composites of the graphene materials and layered double hydroxides and their optimization progress. The electrochemical characteristics of the electrodes have been considered, including specific capacitance, energy density, power density, and capacity retention, affected by pH, synthesis method, reaction temperature, and time. Eventually, the future trend of the electrode materials and their enhancing performance perspective is represented.</p></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"45 ","pages":"Article 100658"},"PeriodicalIF":6.2,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140543021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Few-layer graphene production through graphite exfoliation in pressurized CO2 assisted by natural surfactant 在天然表面活性剂的辅助下,在加压二氧化碳中通过石墨剥离生产少层石墨烯
IF 6.2 3区 材料科学
FlatChem Pub Date : 2024-04-06 DOI: 10.1016/j.flatc.2024.100656
Thuany G. Maraschin , Raiane V. Gonçalves , Marina C. de Vargas , Roberto Correa , Nara R.S. Basso , Griselda B. Galland , Eduardo Cassel
{"title":"Few-layer graphene production through graphite exfoliation in pressurized CO2 assisted by natural surfactant","authors":"Thuany G. Maraschin ,&nbsp;Raiane V. Gonçalves ,&nbsp;Marina C. de Vargas ,&nbsp;Roberto Correa ,&nbsp;Nara R.S. Basso ,&nbsp;Griselda B. Galland ,&nbsp;Eduardo Cassel","doi":"10.1016/j.flatc.2024.100656","DOIUrl":"https://doi.org/10.1016/j.flatc.2024.100656","url":null,"abstract":"<div><p>Graphene research has captivated researchers worldwide, propelling innovation across diverse industries. Through the liquid-phase exfoliation methodology of graphite powder, we have demonstrated a rapid route for obtaining few-layer and multi-layer graphene using a natural surfactant, cardanol. Aqueous phase exfoliation of graphite in the presence of cardanol as a surfactant was conducted to obtain pre-exfoliated graphite suspensions. The influence of different ultrasonication times, 10, 20, and 30 min, and contact times with the surfactant, 1 and 60 min, on the stability and concentration of dispersed exfoliated graphite was evaluated. Results indicate that ultrasonication for 20 min resulted in improved stability and reduced graphene flake sizes, making it suitable for scalable graphene production. Subsequently, the most stable dispersions of exfoliated graphite were subjected to CO<sub>2</sub>-pressurized treatment. Promising results were obtained when employing cardanol at its critical micelle concentration. The graphene exhibited good structural quality, low defect density, and small stacking, with an average size of 15 nm, where 40 % of the stacked graphene was smaller than 5 nm. The findings provide valuable recommendations for the scalable production of graphene with multilayers and a few layers (FLG/MLG), using cardanol, a friendly surfactant, and a novel method of exfoliation utilizing supercritical CO<sub>2</sub>. This technology represents an innovative approach, with potential applications in supercapacitors, solar cells, biosensors, polymer composites, and advanced materials.</p></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"45 ","pages":"Article 100656"},"PeriodicalIF":6.2,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140545593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the effect of BN doping in two-dimensional fullerene networks through first principle simulations 通过第一原理模拟探索二维富勒烯网络中掺杂 BN 的影响
IF 6.2 3区 材料科学
FlatChem Pub Date : 2024-04-06 DOI: 10.1016/j.flatc.2024.100655
Vivek K. Yadav
{"title":"Exploring the effect of BN doping in two-dimensional fullerene networks through first principle simulations","authors":"Vivek K. Yadav","doi":"10.1016/j.flatc.2024.100655","DOIUrl":"https://doi.org/10.1016/j.flatc.2024.100655","url":null,"abstract":"<div><p>The doping of lighter non-metals like boron and nitrogen into fullerene <span><math><mrow><mfenced><mrow><msub><mi>C</mi><mn>60</mn></msub></mrow></mfenced></mrow></math></span> represents a promising advancement in the field of nanoelectronic devices. These doped two-dimensional (2D) materials offer improved stability and enhanced adsorption characteristics compared to pure form. Notably, It displays semiconducting behaviour, resulting in higher conductivity and carrier mobility. This study investigates the structural, electronic, optical, and conductivity/carrier transport properties of 2D polymer sheets made of fullerene, both with and without boron and nitrogen doping. We employ density functional theory (DFT) with PBE and HSE functionals, considering the inclusion of van der Waals (vdW) interactions. The research findings indicate that the <span><math><mrow><mn>2</mn><mi>D</mi></mrow></math></span> sheets of <span><math><mrow><msub><mi>C</mi><mn>60</mn></msub><mo>,</mo><msub><mi>C</mi><mn>58</mn></msub><msub><mi>B</mi><mn>1</mn></msub><msub><mi>N</mi><mn>1</mn></msub></mrow></math></span>, and <span><math><mrow><msub><mi>C</mi><mn>54</mn></msub><msub><mi>B</mi><mn>3</mn></msub><msub><mi>N</mi><mn>3</mn></msub></mrow></math></span> exhibit band gaps of approximately <span><math><mrow><mn>0.97</mn><mi>e</mi><mi>V</mi><mo>(</mo><mn>1.51</mn><mi>e</mi><mi>V</mi><mo>)</mo><mo>,</mo><mn>1.08</mn><mi>e</mi><mi>V</mi><mo>(</mo><mn>1.65</mn><mi>e</mi><mi>V</mi><mo>)</mo></mrow></math></span>, and <span><math><mrow><mn>1.05</mn><mi>e</mi><mi>V</mi><mo>(</mo><mn>1.56</mn><mi>e</mi><mi>V</mi><mo>)</mo></mrow></math></span>, respectively, as obtained from PBE (HSE) calculations. Moreover, according to the deformation potential theory, <span><math><mrow><msub><mi>C</mi><mn>58</mn></msub><msub><mi>B</mi><mn>1</mn></msub><msub><mi>N</mi><mn>1</mn></msub></mrow></math></span> exhibit ultra-high conductivity (<span><math><mrow><msup><mrow><mn>10</mn></mrow><mn>14</mn></msup><msup><mrow><mi>Ω</mi></mrow><mrow><mo>-</mo><mn>1</mn></mrow></msup><msup><mrow><mspace></mspace><mi>c</mi><mi>m</mi></mrow><mrow><mo>-</mo><mn>1</mn></mrow></msup><msup><mrow><mspace></mspace><mi>s</mi></mrow><mrow><mo>-</mo><mn>1</mn></mrow></msup></mrow></math></span> at room temperature). These sheets display cohesive energies of −8.76, −8.72, and <span><math><mrow><mo>-</mo><mn>8.67</mn><mi>e</mi><mi>V</mi></mrow></math></span>, respectively, indicating their stability. These results are promising and underscore the significance of a single pair of <span><math><mrow><mi>B</mi><mi>N</mi></mrow></math></span> dopants in fullerene monolayers for advancing next-generation 2D nano-electronic applications.</p></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"45 ","pages":"Article 100655"},"PeriodicalIF":6.2,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140535952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling stability: Surface amidation-mediated covalent coupling for diminished volumetric changes in silicon/reduced graphene oxide (Si/RGO) composites as Li-ion battery anodes 揭示稳定性:表面酰胺化介导的共价偶联可减少硅/还原氧化石墨烯(Si/RGO)复合材料作为锂离子电池阳极的体积变化
IF 6.2 3区 材料科学
FlatChem Pub Date : 2024-04-04 DOI: 10.1016/j.flatc.2024.100657
Abgeena Shabir , Abbas Ali Hor , S.A. Hashmi , C.M. Julien , S.S. Islam
{"title":"Unveiling stability: Surface amidation-mediated covalent coupling for diminished volumetric changes in silicon/reduced graphene oxide (Si/RGO) composites as Li-ion battery anodes","authors":"Abgeena Shabir ,&nbsp;Abbas Ali Hor ,&nbsp;S.A. Hashmi ,&nbsp;C.M. Julien ,&nbsp;S.S. Islam","doi":"10.1016/j.flatc.2024.100657","DOIUrl":"https://doi.org/10.1016/j.flatc.2024.100657","url":null,"abstract":"<div><p>The preservation of Silicon nanoparticles (Si NPs)’ structural integrity and surface protection during cycling is vital for optimal Si-graphene electrodes, controlling volumetric changes during lithiation/delithiation. Weak physical adherence of Si NPs to the carbon matrix compromises electrode performance, highlighting the need for effective bonding mechanisms. This research focuses on Si/reduced graphene oxide (Si/RGO) composites, employing a scalable, low-temperature synthesis method to examine effect of bonding between Si NPs and RGO in mitigating the volumetric fluctuations during cycling. Characterization techniques, including FTIR, XRD, Raman spectroscopy, SEM, EDX and TGA confirm successful synthesis, offering structural and chemical insights. Electrochemical assessments, including EIS, CV, and GCD, reveal that covalently coupled Si/RGO composites outperform counterparts, demonstrating superior rate and cyclic performance. The first delithiation capacity of 1275 mAh g<sup>−1</sup> surpasses directly assembled Si/RGO and pristine RGO-based anodes, with corresponding values of 736 and 511 mAh g<sup>−1</sup>, respectively and is retained to 670 mAh g<sup>−1</sup> (1.8 times the capacity compared to a graphite anode) at 0.1 A g<sup>−1</sup> after 100 cycles. Furthermore, the research challenges the notion that a high reduction temperature is obligatory for achieving high conductivity in RGO, as observed through improved charge/electron transfer kinetics, detailed in subsequent sections.</p></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"45 ","pages":"Article 100657"},"PeriodicalIF":6.2,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140533380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信