{"title":"聚(N-乙烯基己内酰胺)和乙烯基乙酸对 WS2 纳米片的表面功能化,用于前列腺癌的靶向药物释放","authors":"Mohammadreza Mahdavijalal , Homayon Ahmad Panahi , Elham Moniri , Niloufar Torabi Fard","doi":"10.1016/j.flatc.2024.100777","DOIUrl":null,"url":null,"abstract":"<div><div>Stimuli-responsive nanocarriers have gained attention in cancer therapy as a promising strategy because of their ability to enhance treatment efficacy and minimize off-target medication effects. This study introduces a novel nanopolymer responsive to pH and near-infrared (NIR) light as an intelligent carrier for delivering bicalutamide (BCT) into cancer cells. For this, the surface of tungsten disulfide (WS<sub>2</sub>) nanosheets is modified with temperature-responsive (poly(N-vinylcaprolactam)) and pH-sensitive (vinylacetic acid) polymers and then characterized using TGA, FE-SEM, XRD, and FT-IR techniques. Experimental variables including pH (5.56), temperature (25 °C), and contact time (11.02 min) are optimized using response surface methodology (RSM) and central composite design (CCD), yielding an adsorption efficacy of 99.45 %. The RSM-CCD model’s capability is analyzed using the correlation coefficient (R2) and several statistical error functions, including average relative error (ARE), root mean square error (RMSE), hybrid fractional error function (HYBRID), and Chi-square test (χ2). The in vitro drug release procedure is evaluated at different pH levels (5.6 and 7.4) and temperatures (37 and 50 °C). The results showed a maximum BCT release of 87.2 % within 6 h at 50 °C and pH 5.6, compared to 13.3 % at 37 °C and pH 7.4. Moreover, the BCT-loaded carrier demonstrates complete BCT release (100 %) following 10 min of NIR irradiation at pH 5.6. The kinetic data confirm that the best fit belongs to the zero-order model, and the drug release followed the supercase II transport mechanism.</div></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"48 ","pages":"Article 100777"},"PeriodicalIF":5.9000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface functionalization of WS2 nanosheets with Poly(N-vinylcaprolactam) and vinylacetic acid for targeted drug release in prostate cancer\",\"authors\":\"Mohammadreza Mahdavijalal , Homayon Ahmad Panahi , Elham Moniri , Niloufar Torabi Fard\",\"doi\":\"10.1016/j.flatc.2024.100777\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Stimuli-responsive nanocarriers have gained attention in cancer therapy as a promising strategy because of their ability to enhance treatment efficacy and minimize off-target medication effects. This study introduces a novel nanopolymer responsive to pH and near-infrared (NIR) light as an intelligent carrier for delivering bicalutamide (BCT) into cancer cells. For this, the surface of tungsten disulfide (WS<sub>2</sub>) nanosheets is modified with temperature-responsive (poly(N-vinylcaprolactam)) and pH-sensitive (vinylacetic acid) polymers and then characterized using TGA, FE-SEM, XRD, and FT-IR techniques. Experimental variables including pH (5.56), temperature (25 °C), and contact time (11.02 min) are optimized using response surface methodology (RSM) and central composite design (CCD), yielding an adsorption efficacy of 99.45 %. The RSM-CCD model’s capability is analyzed using the correlation coefficient (R2) and several statistical error functions, including average relative error (ARE), root mean square error (RMSE), hybrid fractional error function (HYBRID), and Chi-square test (χ2). The in vitro drug release procedure is evaluated at different pH levels (5.6 and 7.4) and temperatures (37 and 50 °C). The results showed a maximum BCT release of 87.2 % within 6 h at 50 °C and pH 5.6, compared to 13.3 % at 37 °C and pH 7.4. Moreover, the BCT-loaded carrier demonstrates complete BCT release (100 %) following 10 min of NIR irradiation at pH 5.6. The kinetic data confirm that the best fit belongs to the zero-order model, and the drug release followed the supercase II transport mechanism.</div></div>\",\"PeriodicalId\":316,\"journal\":{\"name\":\"FlatChem\",\"volume\":\"48 \",\"pages\":\"Article 100777\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FlatChem\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452262724001715\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FlatChem","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452262724001715","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Surface functionalization of WS2 nanosheets with Poly(N-vinylcaprolactam) and vinylacetic acid for targeted drug release in prostate cancer
Stimuli-responsive nanocarriers have gained attention in cancer therapy as a promising strategy because of their ability to enhance treatment efficacy and minimize off-target medication effects. This study introduces a novel nanopolymer responsive to pH and near-infrared (NIR) light as an intelligent carrier for delivering bicalutamide (BCT) into cancer cells. For this, the surface of tungsten disulfide (WS2) nanosheets is modified with temperature-responsive (poly(N-vinylcaprolactam)) and pH-sensitive (vinylacetic acid) polymers and then characterized using TGA, FE-SEM, XRD, and FT-IR techniques. Experimental variables including pH (5.56), temperature (25 °C), and contact time (11.02 min) are optimized using response surface methodology (RSM) and central composite design (CCD), yielding an adsorption efficacy of 99.45 %. The RSM-CCD model’s capability is analyzed using the correlation coefficient (R2) and several statistical error functions, including average relative error (ARE), root mean square error (RMSE), hybrid fractional error function (HYBRID), and Chi-square test (χ2). The in vitro drug release procedure is evaluated at different pH levels (5.6 and 7.4) and temperatures (37 and 50 °C). The results showed a maximum BCT release of 87.2 % within 6 h at 50 °C and pH 5.6, compared to 13.3 % at 37 °C and pH 7.4. Moreover, the BCT-loaded carrier demonstrates complete BCT release (100 %) following 10 min of NIR irradiation at pH 5.6. The kinetic data confirm that the best fit belongs to the zero-order model, and the drug release followed the supercase II transport mechanism.
期刊介绍:
FlatChem - Chemistry of Flat Materials, a new voice in the community, publishes original and significant, cutting-edge research related to the chemistry of graphene and related 2D & layered materials. The overall aim of the journal is to combine the chemistry and applications of these materials, where the submission of communications, full papers, and concepts should contain chemistry in a materials context, which can be both experimental and/or theoretical. In addition to original research articles, FlatChem also offers reviews, minireviews, highlights and perspectives on the future of this research area with the scientific leaders in fields related to Flat Materials. Topics of interest include, but are not limited to, the following: -Design, synthesis, applications and investigation of graphene, graphene related materials and other 2D & layered materials (for example Silicene, Germanene, Phosphorene, MXenes, Boron nitride, Transition metal dichalcogenides) -Characterization of these materials using all forms of spectroscopy and microscopy techniques -Chemical modification or functionalization and dispersion of these materials, as well as interactions with other materials -Exploring the surface chemistry of these materials for applications in: Sensors or detectors in electrochemical/Lab on a Chip devices, Composite materials, Membranes, Environment technology, Catalysis for energy storage and conversion (for example fuel cells, supercapacitors, batteries, hydrogen storage), Biomedical technology (drug delivery, biosensing, bioimaging)