Haoyu Yin , Ruixin Jia , Kairui Jiang , Jiahui Li , Hui Zeng , Kaige Sun , Binghui Xu
{"title":"Metal-organic framework on graphene derived hierarchical carbon supported tin dioxide nanocomposite for superior lithium ion storage","authors":"Haoyu Yin , Ruixin Jia , Kairui Jiang , Jiahui Li , Hui Zeng , Kaige Sun , Binghui Xu","doi":"10.1016/j.flatc.2024.100792","DOIUrl":null,"url":null,"abstract":"<div><div>Tin dioxide (SnO<sub>2</sub>) based anode material is investigated as an alternative choice to current graphite counterpart for lithium-ion batteries. Effective dispersing SnO<sub>2</sub> nanocrystals in a rationally designed carbon matrix with distinctive microstructures is critical for the enhancement of the electrochemical performances. Herein, 1,3,5-benzenetricarboxylic acid (C<sub>9</sub>H<sub>6</sub>O<sub>6</sub>, H<sub>3</sub>BTC) based 1D metal–organic framework (MOF) material Sn-BTC and tea polyphenol (TP) modified 2D reduced graphene oxide (RGO) samples are firstly prepared, which are further employed to engineer a Sn-BTC/TP-RGO precursor with unique microstructures in a mild hydrothermal condition. Finally, the Sn-BTC/TP-RGO can be directly converted the hierarchical SnO<sub>2</sub>/C/RGO sample, in which SnO<sub>2</sub> nanocrystals are well dispersed by the 1D pyrolytic carbon and 2D RGO skeleton after a thermal treatment. Critical challenges of MOF degradation, inhomogeneous distribution of SnO<sub>2</sub> nanocrystals and over reassembly of the RGO layers are well addressed. The SnO<sub>2</sub>/C/RGO nanocomposite shows superior lithium ion storage behaviors than the controlled samples in half-cell, which has a high specific capacity of 780.03 mAh·g<sup>−1</sup> over 200 cycles at a low-density current of 200 mA·g<sup>−1</sup>, a stable capacity of about 698.27 mAh·g<sup>−1</sup> over 1000 cycles at a high-density current of 1000 mA·g<sup>−1</sup>. Moreover, the full-cell performance and the lithium ion storage mechanism of the SnO<sub>2</sub>/C/RGO sample are studied.</div></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"49 ","pages":"Article 100792"},"PeriodicalIF":5.9000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FlatChem","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452262724001867","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Tin dioxide (SnO2) based anode material is investigated as an alternative choice to current graphite counterpart for lithium-ion batteries. Effective dispersing SnO2 nanocrystals in a rationally designed carbon matrix with distinctive microstructures is critical for the enhancement of the electrochemical performances. Herein, 1,3,5-benzenetricarboxylic acid (C9H6O6, H3BTC) based 1D metal–organic framework (MOF) material Sn-BTC and tea polyphenol (TP) modified 2D reduced graphene oxide (RGO) samples are firstly prepared, which are further employed to engineer a Sn-BTC/TP-RGO precursor with unique microstructures in a mild hydrothermal condition. Finally, the Sn-BTC/TP-RGO can be directly converted the hierarchical SnO2/C/RGO sample, in which SnO2 nanocrystals are well dispersed by the 1D pyrolytic carbon and 2D RGO skeleton after a thermal treatment. Critical challenges of MOF degradation, inhomogeneous distribution of SnO2 nanocrystals and over reassembly of the RGO layers are well addressed. The SnO2/C/RGO nanocomposite shows superior lithium ion storage behaviors than the controlled samples in half-cell, which has a high specific capacity of 780.03 mAh·g−1 over 200 cycles at a low-density current of 200 mA·g−1, a stable capacity of about 698.27 mAh·g−1 over 1000 cycles at a high-density current of 1000 mA·g−1. Moreover, the full-cell performance and the lithium ion storage mechanism of the SnO2/C/RGO sample are studied.
期刊介绍:
FlatChem - Chemistry of Flat Materials, a new voice in the community, publishes original and significant, cutting-edge research related to the chemistry of graphene and related 2D & layered materials. The overall aim of the journal is to combine the chemistry and applications of these materials, where the submission of communications, full papers, and concepts should contain chemistry in a materials context, which can be both experimental and/or theoretical. In addition to original research articles, FlatChem also offers reviews, minireviews, highlights and perspectives on the future of this research area with the scientific leaders in fields related to Flat Materials. Topics of interest include, but are not limited to, the following: -Design, synthesis, applications and investigation of graphene, graphene related materials and other 2D & layered materials (for example Silicene, Germanene, Phosphorene, MXenes, Boron nitride, Transition metal dichalcogenides) -Characterization of these materials using all forms of spectroscopy and microscopy techniques -Chemical modification or functionalization and dispersion of these materials, as well as interactions with other materials -Exploring the surface chemistry of these materials for applications in: Sensors or detectors in electrochemical/Lab on a Chip devices, Composite materials, Membranes, Environment technology, Catalysis for energy storage and conversion (for example fuel cells, supercapacitors, batteries, hydrogen storage), Biomedical technology (drug delivery, biosensing, bioimaging)