用等离子体方法增强石墨烯基超级电容器的研究进展

IF 5.9 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Khaled Abdou Ahmed Abdou Elsehsah , Zulkarnain Ahmad Noorden , Norhafezaidi Mat Saman , Noor Azlinda Ahmad , Mohd Faizal Hasan , Mohd Nazren Mohd Ghazali
{"title":"用等离子体方法增强石墨烯基超级电容器的研究进展","authors":"Khaled Abdou Ahmed Abdou Elsehsah ,&nbsp;Zulkarnain Ahmad Noorden ,&nbsp;Norhafezaidi Mat Saman ,&nbsp;Noor Azlinda Ahmad ,&nbsp;Mohd Faizal Hasan ,&nbsp;Mohd Nazren Mohd Ghazali","doi":"10.1016/j.flatc.2025.100832","DOIUrl":null,"url":null,"abstract":"<div><div>Graphene aerogels (GAs) have emerged as promising materials for supercapacitor applications, yet traditional methods often fall short of achieving optimal surface modifications for enhanced electrochemical properties. The focus of the review is to explore the current techniques used in plasma treatment for GA, how these are effective, what can be done to improve the technology, and what further research is required to advance the field. Particular attention is given to oxygen and nitrogen plasma treatments, which have shown significant improvements in specific capacitance and cycling stability. Hydrogen plasma treatment assimilates hydrogen atoms into graphene, potentially augmenting chemical reactivity and charge transfer. The introduction of nitrogen into graphene through plasma treatment results in the incorporation of nitrogen atoms, which causes changes in the electrical and mechanical characteristics of the material. This can lead to higher capacitance and enhanced cycling stability, which means improved retention after charge-discharge cycles. The existing techniques are primarily focused on reduced graphene oxide and other graphene fibers or GA, but the studies are minimal, and a consensus on the overall reliability in achieving high capacitance is also seen to be less precise. This work proposes future directions to facilitate the development of high-performance, plasma-treated GA supercapacitors.</div></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"50 ","pages":"Article 100832"},"PeriodicalIF":5.9000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing graphene-based supercapacitors with plasma methods: A review\",\"authors\":\"Khaled Abdou Ahmed Abdou Elsehsah ,&nbsp;Zulkarnain Ahmad Noorden ,&nbsp;Norhafezaidi Mat Saman ,&nbsp;Noor Azlinda Ahmad ,&nbsp;Mohd Faizal Hasan ,&nbsp;Mohd Nazren Mohd Ghazali\",\"doi\":\"10.1016/j.flatc.2025.100832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Graphene aerogels (GAs) have emerged as promising materials for supercapacitor applications, yet traditional methods often fall short of achieving optimal surface modifications for enhanced electrochemical properties. The focus of the review is to explore the current techniques used in plasma treatment for GA, how these are effective, what can be done to improve the technology, and what further research is required to advance the field. Particular attention is given to oxygen and nitrogen plasma treatments, which have shown significant improvements in specific capacitance and cycling stability. Hydrogen plasma treatment assimilates hydrogen atoms into graphene, potentially augmenting chemical reactivity and charge transfer. The introduction of nitrogen into graphene through plasma treatment results in the incorporation of nitrogen atoms, which causes changes in the electrical and mechanical characteristics of the material. This can lead to higher capacitance and enhanced cycling stability, which means improved retention after charge-discharge cycles. The existing techniques are primarily focused on reduced graphene oxide and other graphene fibers or GA, but the studies are minimal, and a consensus on the overall reliability in achieving high capacitance is also seen to be less precise. This work proposes future directions to facilitate the development of high-performance, plasma-treated GA supercapacitors.</div></div>\",\"PeriodicalId\":316,\"journal\":{\"name\":\"FlatChem\",\"volume\":\"50 \",\"pages\":\"Article 100832\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FlatChem\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452262725000261\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FlatChem","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452262725000261","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

石墨烯气凝胶(GAs)已成为超级电容器应用的有前途的材料,但传统的方法往往无法实现最佳的表面改性以增强电化学性能。综述的重点是探讨目前用于GA等离子体治疗的技术,这些技术如何有效,可以做些什么来改进技术,以及需要进一步的研究来推进该领域。特别关注氧和氮等离子体处理,它们在比电容和循环稳定性方面表现出显著的改善。氢等离子体处理将氢原子吸收到石墨烯中,潜在地增强了化学反应性和电荷转移。通过等离子体处理将氮引入石墨烯会导致氮原子的掺入,从而导致材料的电学和机械特性发生变化。这可以导致更高的电容和增强的循环稳定性,这意味着提高了充放电循环后的保留率。现有的技术主要集中在还原氧化石墨烯和其他石墨烯纤维或GA上,但研究很少,而且对实现高电容的整体可靠性的共识也被认为不太精确。这项工作提出了未来的发展方向,以促进高性能,等离子体处理的GA超级电容器的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhancing graphene-based supercapacitors with plasma methods: A review

Enhancing graphene-based supercapacitors with plasma methods: A review
Graphene aerogels (GAs) have emerged as promising materials for supercapacitor applications, yet traditional methods often fall short of achieving optimal surface modifications for enhanced electrochemical properties. The focus of the review is to explore the current techniques used in plasma treatment for GA, how these are effective, what can be done to improve the technology, and what further research is required to advance the field. Particular attention is given to oxygen and nitrogen plasma treatments, which have shown significant improvements in specific capacitance and cycling stability. Hydrogen plasma treatment assimilates hydrogen atoms into graphene, potentially augmenting chemical reactivity and charge transfer. The introduction of nitrogen into graphene through plasma treatment results in the incorporation of nitrogen atoms, which causes changes in the electrical and mechanical characteristics of the material. This can lead to higher capacitance and enhanced cycling stability, which means improved retention after charge-discharge cycles. The existing techniques are primarily focused on reduced graphene oxide and other graphene fibers or GA, but the studies are minimal, and a consensus on the overall reliability in achieving high capacitance is also seen to be less precise. This work proposes future directions to facilitate the development of high-performance, plasma-treated GA supercapacitors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
FlatChem
FlatChem Multiple-
CiteScore
8.40
自引率
6.50%
发文量
104
审稿时长
26 days
期刊介绍: FlatChem - Chemistry of Flat Materials, a new voice in the community, publishes original and significant, cutting-edge research related to the chemistry of graphene and related 2D & layered materials. The overall aim of the journal is to combine the chemistry and applications of these materials, where the submission of communications, full papers, and concepts should contain chemistry in a materials context, which can be both experimental and/or theoretical. In addition to original research articles, FlatChem also offers reviews, minireviews, highlights and perspectives on the future of this research area with the scientific leaders in fields related to Flat Materials. Topics of interest include, but are not limited to, the following: -Design, synthesis, applications and investigation of graphene, graphene related materials and other 2D & layered materials (for example Silicene, Germanene, Phosphorene, MXenes, Boron nitride, Transition metal dichalcogenides) -Characterization of these materials using all forms of spectroscopy and microscopy techniques -Chemical modification or functionalization and dispersion of these materials, as well as interactions with other materials -Exploring the surface chemistry of these materials for applications in: Sensors or detectors in electrochemical/Lab on a Chip devices, Composite materials, Membranes, Environment technology, Catalysis for energy storage and conversion (for example fuel cells, supercapacitors, batteries, hydrogen storage), Biomedical technology (drug delivery, biosensing, bioimaging)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信