设计硬币电池超级电容器:将石墨烯泡沫与金属氧化物复合电极结合以提高储能性能

IF 5.9 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Abdulmajid A. Mirghni , Abubakar Dahiru Shuaibu , Yuda Prima Hardianto , Fatima Omar AL-Qwairi , Arshad Hussain , Syed Shaheen Shah , Ncholu Manyala , Md. Abdul Aziz
{"title":"设计硬币电池超级电容器:将石墨烯泡沫与金属氧化物复合电极结合以提高储能性能","authors":"Abdulmajid A. Mirghni ,&nbsp;Abubakar Dahiru Shuaibu ,&nbsp;Yuda Prima Hardianto ,&nbsp;Fatima Omar AL-Qwairi ,&nbsp;Arshad Hussain ,&nbsp;Syed Shaheen Shah ,&nbsp;Ncholu Manyala ,&nbsp;Md. Abdul Aziz","doi":"10.1016/j.flatc.2025.100829","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents the development of a high-performance supercapacitor using a sodium cobalt oxide integrated with graphene foam (NaCoO₂@GF), PVA-KOH membrane, and activated carbon derived from jute sticks (JC). The NaCoO₂@GF/PVA-KOH/JC full-cell device operates effectively across a voltage range of 0 to 1.7 V, demonstrating excellent reversibility and efficient charge storage through diffusion-controlled redox reactions. The device exhibits energy density up to 36.2 Wh kg<sup>−1</sup> at 0.5 A g-1 and power densitie up to 7749.2 W kg<sup>−1</sup> at 10 A, as confirmed by GCD data, and shows improved electrochemical performance after stability testing, with enhanced ionic conductivity and electrode material activation. Notably, the NaCoO₂@GF/PVA-KOH/JC supercapacitor achieves nearly 100 % Coulombic efficiency over 10,000 cycles, maintaining a retention of about 87 % for most cycles before a slight drop to 83 %. These results demonstrate the superior performance and potential of this composite material for practical energy storage applications.</div></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"50 ","pages":"Article 100829"},"PeriodicalIF":5.9000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing coin-cell supercapacitors: Combining graphene foam with metal oxide composite electrodes for improved energy storage performance\",\"authors\":\"Abdulmajid A. Mirghni ,&nbsp;Abubakar Dahiru Shuaibu ,&nbsp;Yuda Prima Hardianto ,&nbsp;Fatima Omar AL-Qwairi ,&nbsp;Arshad Hussain ,&nbsp;Syed Shaheen Shah ,&nbsp;Ncholu Manyala ,&nbsp;Md. Abdul Aziz\",\"doi\":\"10.1016/j.flatc.2025.100829\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents the development of a high-performance supercapacitor using a sodium cobalt oxide integrated with graphene foam (NaCoO₂@GF), PVA-KOH membrane, and activated carbon derived from jute sticks (JC). The NaCoO₂@GF/PVA-KOH/JC full-cell device operates effectively across a voltage range of 0 to 1.7 V, demonstrating excellent reversibility and efficient charge storage through diffusion-controlled redox reactions. The device exhibits energy density up to 36.2 Wh kg<sup>−1</sup> at 0.5 A g-1 and power densitie up to 7749.2 W kg<sup>−1</sup> at 10 A, as confirmed by GCD data, and shows improved electrochemical performance after stability testing, with enhanced ionic conductivity and electrode material activation. Notably, the NaCoO₂@GF/PVA-KOH/JC supercapacitor achieves nearly 100 % Coulombic efficiency over 10,000 cycles, maintaining a retention of about 87 % for most cycles before a slight drop to 83 %. These results demonstrate the superior performance and potential of this composite material for practical energy storage applications.</div></div>\",\"PeriodicalId\":316,\"journal\":{\"name\":\"FlatChem\",\"volume\":\"50 \",\"pages\":\"Article 100829\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FlatChem\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452262725000236\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FlatChem","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452262725000236","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究介绍了一种高性能超级电容器的开发,该电容器使用氧化钴钠与石墨烯泡沫(NaCoO₂@GF), PVA-KOH膜和黄麻棒(JC)活性炭集成。NaCoO₂@GF/PVA-KOH/JC全电池器件在0至1.7 V的电压范围内有效工作,通过扩散控制的氧化还原反应表现出优异的可逆性和高效的电荷存储。GCD数据证实,该器件在0.5 A g-1时的能量密度可达36.2 Wh kg -1,在10 A时的功率密度可达7749.2 W kg -1,并且在稳定性测试后显示出改善的电化学性能,离子电导率和电极材料活化都有所增强。值得注意的是,NaCoO₂@GF/PVA-KOH/JC超级电容器在10,000次循环中达到近100%的库仑效率,在大多数循环中保持约87%的保留率,然后略微下降到83%。这些结果证明了这种复合材料在实际储能应用中的优越性能和潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Designing coin-cell supercapacitors: Combining graphene foam with metal oxide composite electrodes for improved energy storage performance

Designing coin-cell supercapacitors: Combining graphene foam with metal oxide composite electrodes for improved energy storage performance
This study presents the development of a high-performance supercapacitor using a sodium cobalt oxide integrated with graphene foam (NaCoO₂@GF), PVA-KOH membrane, and activated carbon derived from jute sticks (JC). The NaCoO₂@GF/PVA-KOH/JC full-cell device operates effectively across a voltage range of 0 to 1.7 V, demonstrating excellent reversibility and efficient charge storage through diffusion-controlled redox reactions. The device exhibits energy density up to 36.2 Wh kg−1 at 0.5 A g-1 and power densitie up to 7749.2 W kg−1 at 10 A, as confirmed by GCD data, and shows improved electrochemical performance after stability testing, with enhanced ionic conductivity and electrode material activation. Notably, the NaCoO₂@GF/PVA-KOH/JC supercapacitor achieves nearly 100 % Coulombic efficiency over 10,000 cycles, maintaining a retention of about 87 % for most cycles before a slight drop to 83 %. These results demonstrate the superior performance and potential of this composite material for practical energy storage applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
FlatChem
FlatChem Multiple-
CiteScore
8.40
自引率
6.50%
发文量
104
审稿时长
26 days
期刊介绍: FlatChem - Chemistry of Flat Materials, a new voice in the community, publishes original and significant, cutting-edge research related to the chemistry of graphene and related 2D & layered materials. The overall aim of the journal is to combine the chemistry and applications of these materials, where the submission of communications, full papers, and concepts should contain chemistry in a materials context, which can be both experimental and/or theoretical. In addition to original research articles, FlatChem also offers reviews, minireviews, highlights and perspectives on the future of this research area with the scientific leaders in fields related to Flat Materials. Topics of interest include, but are not limited to, the following: -Design, synthesis, applications and investigation of graphene, graphene related materials and other 2D & layered materials (for example Silicene, Germanene, Phosphorene, MXenes, Boron nitride, Transition metal dichalcogenides) -Characterization of these materials using all forms of spectroscopy and microscopy techniques -Chemical modification or functionalization and dispersion of these materials, as well as interactions with other materials -Exploring the surface chemistry of these materials for applications in: Sensors or detectors in electrochemical/Lab on a Chip devices, Composite materials, Membranes, Environment technology, Catalysis for energy storage and conversion (for example fuel cells, supercapacitors, batteries, hydrogen storage), Biomedical technology (drug delivery, biosensing, bioimaging)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信