Surface functionalization of Ag-doped zirconium oxide layers for molecular alignment

IF 5.9 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Dong Wook Lee , Dae-Shik Seo
{"title":"Surface functionalization of Ag-doped zirconium oxide layers for molecular alignment","authors":"Dong Wook Lee ,&nbsp;Dae-Shik Seo","doi":"10.1016/j.flatc.2025.100831","DOIUrl":null,"url":null,"abstract":"<div><div>Ag-doped ZrO films were fabricated using a brush-based solution-coating process that integrated conventional film formation with alignment layer treatment in a single step. The films were doped with Ag at concentrations of 0, 10, and 20 wt%. Shear stress generated by brush-hair movements induced anisotropic micro- and nanogroove structures on the film surface, facilitating uniform liquid crystal (LC) alignment through geometric constraints. The LC alignment state was confirmed by polarized optical microscopy. The Ag-doped ZrO films exhibited a high polar anchoring energy of 1.82 × 10<sup>−3</sup> J m<sup>−2</sup> and minimal hysteresis, indicating a weak image-sticking effect. Additionally, these films demonstrated an optical transmittance of 83.5 %, making them suitable for optoelectronic applications. Overall, Ag doping enhances the functionality of ZrO films as uniform LC alignment layers and broadens their potential for LC device applications.</div></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"50 ","pages":"Article 100831"},"PeriodicalIF":5.9000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FlatChem","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S245226272500025X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Ag-doped ZrO films were fabricated using a brush-based solution-coating process that integrated conventional film formation with alignment layer treatment in a single step. The films were doped with Ag at concentrations of 0, 10, and 20 wt%. Shear stress generated by brush-hair movements induced anisotropic micro- and nanogroove structures on the film surface, facilitating uniform liquid crystal (LC) alignment through geometric constraints. The LC alignment state was confirmed by polarized optical microscopy. The Ag-doped ZrO films exhibited a high polar anchoring energy of 1.82 × 10−3 J m−2 and minimal hysteresis, indicating a weak image-sticking effect. Additionally, these films demonstrated an optical transmittance of 83.5 %, making them suitable for optoelectronic applications. Overall, Ag doping enhances the functionality of ZrO films as uniform LC alignment layers and broadens their potential for LC device applications.

Abstract Image

ag掺杂氧化锆层分子定位的表面功能化
采用基于电刷的溶液镀膜工艺制备了掺杂ag的ZrO薄膜,该工艺将传统的薄膜形成与取向层处理结合在一起。薄膜分别以0.010%和20%的浓度掺杂银。电刷毛运动产生的剪应力在薄膜表面产生各向异性的微沟槽和纳米沟槽结构,通过几何约束使液晶(LC)排列均匀。用偏光显微镜确定了LC的对准状态。掺杂ag的ZrO薄膜具有较高的极性锚定能(1.82 × 10−3 J m−2)和最小的磁滞,显示出较弱的粘像效应。此外,这些薄膜显示出83.5%的光学透过率,使其适合光电应用。总的来说,Ag掺杂增强了ZrO薄膜作为均匀LC对准层的功能,拓宽了它们在LC器件应用中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
FlatChem
FlatChem Multiple-
CiteScore
8.40
自引率
6.50%
发文量
104
审稿时长
26 days
期刊介绍: FlatChem - Chemistry of Flat Materials, a new voice in the community, publishes original and significant, cutting-edge research related to the chemistry of graphene and related 2D & layered materials. The overall aim of the journal is to combine the chemistry and applications of these materials, where the submission of communications, full papers, and concepts should contain chemistry in a materials context, which can be both experimental and/or theoretical. In addition to original research articles, FlatChem also offers reviews, minireviews, highlights and perspectives on the future of this research area with the scientific leaders in fields related to Flat Materials. Topics of interest include, but are not limited to, the following: -Design, synthesis, applications and investigation of graphene, graphene related materials and other 2D & layered materials (for example Silicene, Germanene, Phosphorene, MXenes, Boron nitride, Transition metal dichalcogenides) -Characterization of these materials using all forms of spectroscopy and microscopy techniques -Chemical modification or functionalization and dispersion of these materials, as well as interactions with other materials -Exploring the surface chemistry of these materials for applications in: Sensors or detectors in electrochemical/Lab on a Chip devices, Composite materials, Membranes, Environment technology, Catalysis for energy storage and conversion (for example fuel cells, supercapacitors, batteries, hydrogen storage), Biomedical technology (drug delivery, biosensing, bioimaging)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信