{"title":"Innovative formaldehyde adsorption with optimized deep eutectic solvents: An experiment and multilevel computational chemistry approach.","authors":"Changhang Zhang, Xiaoyu Li, Xinyu Wu, Jun Xiao, Hailan Lian, Liang Chen","doi":"10.1016/j.envres.2024.120593","DOIUrl":"10.1016/j.envres.2024.120593","url":null,"abstract":"<p><p>Formaldehyde, a hazardous gas that is exposed to everyone every day, has been proven to pose an elevated risk of respiratory problems, allergies, and chronic diseases. Adsorption technologies have proven to be a straightforward and labor-saving method to reduce indoor formaldehyde levels. Currently, extensive research has been conducted utilizing Deep Eutectic Solvents (DES) as adsorbents for harmful gases, yet the adsorption and conversion mechanisms for formaldehyde remain unclear. In this study, we highlighted the adsorption and transformation mechanisms of formaldehyde with DES employing quantum chemical and molecular dynamics calculations. Initially, thermodynamic software (CosmoTherm) was employed to calculate the logarithmic activity coefficients (LAC) of formaldehyde and determine the solid-liquid equilibrium (SLE) for 416 combinations of DES. On the basis of the eutectic point and LAC of DES, potential formaldehyde adsorbents were screened. In the second step, the DES screened out has a good formaldehyde adsorption capacity through the experiment. Finally, the reactive sites, reaction pathways, van der Waals interactions, and hydrogen bonds of DES of L-cysteine/diethanolamine (CYS-DEA) and formaldehyde were studied through a theoretical approach. This study comprehensively elucidates the screening of formaldehyde adsorbents, experimental adsorption, and adsorption mechanisms. Significantly shortens the development cycle of DES as formaldehyde adsorbents.</p>","PeriodicalId":312,"journal":{"name":"Environmental Research","volume":" ","pages":"120593"},"PeriodicalIF":7.7,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142823476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yinglong Chen, Hongling Zhang, Yang You, Jing Zhang, Lian Tang
{"title":"A hybrid deep learning model based on signal decomposition and dynamic feature selection for forecasting the influent parameters of wastewater treatment plants.","authors":"Yinglong Chen, Hongling Zhang, Yang You, Jing Zhang, Lian Tang","doi":"10.1016/j.envres.2024.120615","DOIUrl":"10.1016/j.envres.2024.120615","url":null,"abstract":"<p><p>Accurate prediction of influent parameters such as chemical oxygen demand (COD) and biochemical oxygen demand over five days (BOD<sub>5</sub>) is crucial for optimizing wastewater treatment processes, enhancing efficiency, and reducing costs. Traditional prediction methods struggle to capture the dynamic variations of influent parameters. Mechanistic biochemical models are unable to predict these parameters, and conventional machine learning methods show limited accuracy in forecasting key water quality indicators such as COD and BOD<sub>5</sub>. This study proposes a hybrid model that combines signal decomposition and deep learning to improve the accuracy of COD and BOD<sub>5</sub> predictions. Additionally, a new dynamic feature selection (DFS) mechanism is introduced to optimize feature selection in real-time, reducing model redundancy and enhancing prediction stability. The model achieved R<sup>2</sup> values of 0.88 and 0.96 for COD, and 0.75 and 0.93 for BOD<sub>5</sub> across two wastewater treatment plants. RMSE and MAE values were significantly reduced, with decreases of 14.93% and 12.55% for COD at WWTP No. 5, and 20.89% and 20.40% for COD at WWTP No. 7. For BOD<sub>5</sub>, RMSE and MAE decreased by 3.56% and 5.28% at WWTP No. 5, and by 10.06% and 10.20% at WWTP No. 7. These results highlight the effectiveness of the proposed model and DFS mechanism in improving prediction accuracy and model performance. This approach provides valuable insights for wastewater treatment optimization and broader time series forecasting applications.</p>","PeriodicalId":312,"journal":{"name":"Environmental Research","volume":" ","pages":"120615"},"PeriodicalIF":7.7,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142823723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Guangfeng Huang, Jian Zhang, Chunlei Zhu, David Z Zhu
{"title":"Direct development of microalgae-bacterial granular sludge system by seeding pre-made microalgae-dewatered sludge granules: Performance and mechanism analysis.","authors":"Guangfeng Huang, Jian Zhang, Chunlei Zhu, David Z Zhu","doi":"10.1016/j.envres.2024.120600","DOIUrl":"10.1016/j.envres.2024.120600","url":null,"abstract":"<p><p>Microalgae-bacterial granular sludge (MBGS) process has great potential in achieving carbon neutrality and energy neutrality, but rapidly cultivating MBGS remains challenging. To address this challenge, this study proposes a new strategy to develop MBGS systems using pre-made granules from microalgae and dewatered sludge. The results indicate that using pre-made microalgae-dewatered sludge granules (M-DSG) as inoculants can directly develop MBGS system, with M-DSG maintaining a relatively stable granular structure, and ultimately achieving pollutant removal efficiencies of 94.0% for chemical oxygen demand (COD), 99.7% for ammonium nitrogen (NH<sub>4</sub><sup>+</sup>-N), and 86.0% for total inorganic nitrogen (TIN). Extracellular polymeric substances (EPS) play a dominant role in maintaining the structure of granules, while filamentous bacteria/algae provide additional reinforcement. The adhesion of microalgae to granules possibly relies on polysaccharides in tightly bound extracellular polymeric substances (TB-EPS) and proteins in loosely bound extracellular polymeric substances (LB-EPS). Microbial community analysis reveals that the target algae (Chlorella) remain the primary algae, and heterotrophic nitrifying bacteria (HNB) and denitrifying bacteria are enriched.</p>","PeriodicalId":312,"journal":{"name":"Environmental Research","volume":" ","pages":"120600"},"PeriodicalIF":7.7,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142821569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Associations between prenatal exposure to PFAS and cardiometabolic health in preadolescents.","authors":"Naomi Lejeune, Elke Rouxel, Christine Monfort, Hélène Tillaut, Florence Rouget, Nathalie Costet, Frank Giton, Éric Gaudreau, Fabrice Lainé, Ronan Garlantézec, Sylvaine Cordier, Cécile Chevrier, Charline Warembourg","doi":"10.1016/j.envres.2024.120607","DOIUrl":"10.1016/j.envres.2024.120607","url":null,"abstract":"<p><strong>Introduction: </strong>While a number of studies have examined the effects of prenatal exposure to per- and polyfluoroalkyl substances (PFAS) on childhood obesity, the results reported have been inconsistent and few studies have integrated biological markers. The aim of this study was to investigate the associations between prenatal exposure to PFAS and cardiometabolic health parameters at age 12, taking pubertal stage into consideration.</p><p><strong>Method: </strong>This study included 394 mother-child pairs enrolled in the PELAGIE mother-child cohort (France). Nine PFAS were measured in umbilical cord blood, and the children attended a clinical examination at age 12. Anthropometry, blood metabolic markers, and blood pressure were measured and used to build an internal cardiometabolic score. Linear regression and Quantile G-computation models were used to evaluate individual and mixture PFAS effects, adjusting for confounders and stratifying by sex and pubertal stage.</p><p><strong>Results: </strong>No statistically significant association was observed between prenatal exposure to PFAS and cardiometabolic score at age 12. In post-menarche girls, perfluorohexane sulfonate (PFHxS) and perfluorodecanoic acid (PFDA) were statistically significantly associated with a decrease in a number of adiposity parameters (e.g., Body mass index z-score: beta [95%CI] = -0.37 [-0.67; -0.07]), as well as a decrease in low-density lipoproteins (LDL) and leptin levels. Similar results were observed with PFAS mixture, with statistically significantly decreased tricipital skinfolds (beta [95%CI] = -1.30 [(-2.54;-0.06)]). Isolated associations, including higher systolic blood pressure, changes in cholesterol levels, and lower adiponectin levels were observed in specific subgroups.</p><p><strong>Conclusion: </strong>There is no clear evidence of an association between prenatal exposure to PFAS and the cardiometabolic health at earlier stage of pubertal development. However, inverse associations between PFAS and anthropometric measures have been observed in post-menarche girls. While the literature on this topic is scarce in pre-adolescents, these results suggest the importance of considering sex and pubertal stage in these associations.</p>","PeriodicalId":312,"journal":{"name":"Environmental Research","volume":" ","pages":"120607"},"PeriodicalIF":7.7,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142821568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Functional characteristics and mechanisms of microbial community succession and assembly in a long-term moving bed biofilm reactor treating real municipal wastewater.","authors":"Fuqiang Fan, Mingtao Li, Junfeng Dou, Jiaqi Zhang, Danyi Li, Fangang Meng, Yue Dong","doi":"10.1016/j.envres.2024.120602","DOIUrl":"10.1016/j.envres.2024.120602","url":null,"abstract":"<p><p>Moving bed biofilm reactor (MBBR) technology with diverse merits is efficient in treating various waste streams whereas their microbial functional properties and ecology still need in-depth investigation, especially in real wastewater treatment systems. Herein, a well-controlled MBBR treating municipal wastewater was established to investigate the long-term system performance and the underlying principles of community succession and assembly. The system successfully achieved ammonium, TN, and chemical oxygen demand (COD) removal of 96.7 ± 2.2%, 75.2 ± 3.6%, and 90.3 ± 3.8%, respectively, under simplified operation and low energy consumption. The effluent TN concentrations achieved 6.2 ± 1.6 mg-N/L despite the influent fluctuations. Diverse functional denitrifiers, such as Denitratisoma, Thermomonas, and Flavobacterium, and the anammox bacteria Candidatus Brocadia successfully enriched in anoxic chamber biofilms. The nitrifiers Nitrosomonas (∼0.73%) and Nitrospira (∼14.0%) exhibited appreciable nitrification capacity in specialized aerobic chambers. Ecological null model and network analysis revealed that microbial community assembly was mainly regulated by niche-based deterministic processes and air diffusion in the aerobic chamber resulted in more intense and complex bacterial interactions. Environmental filters including influent substrate and operating conditions (e.g., reactor configuration, DO, and temperature) greatly shaped the microbial community structure and affected carbon and nitrogen metabolism. The positive ecological roles of influent microflora and functional redundancy in biofilm communities were believed to facilitate functional stability. The anammox process coupled with partial denitrification in a specialized chamber demonstrated positive application implications. These findings provided valuable perspectives in deciphering the microbiological and ecological mechanisms, functional properties, and application potentials of MBBR.</p>","PeriodicalId":312,"journal":{"name":"Environmental Research","volume":" ","pages":"120602"},"PeriodicalIF":7.7,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142823459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michele Sassano, Monireh Sadat Seyyedsalehi, Elizabeth Maria Kappil, Sirui Zhang, Tongzhang Zheng, Paolo Boffetta
{"title":"Exposure to per- and poly-fluoroalkyl substances and lung, head and neck, and thyroid cancer: A systematic review and meta-analysis.","authors":"Michele Sassano, Monireh Sadat Seyyedsalehi, Elizabeth Maria Kappil, Sirui Zhang, Tongzhang Zheng, Paolo Boffetta","doi":"10.1016/j.envres.2024.120606","DOIUrl":"10.1016/j.envres.2024.120606","url":null,"abstract":"<p><p>Recent evidence suggests that exposure to per- and polyfluoroalkyl substances (PFAS) may increase the risk of different cancer types, such as kidney and testicular cancers. Instead, evidence for lung, head and neck, and thyroid cancer is sparse. Hence, we aimed to summarize available literature on the topic. We searched Pubmed and Scopus in January 2024 to retrieve relevant studies and estimated pooled relative risks (RRs) and 95% confidence intervals (CIs) for lung, head and neck, and thyroid cancers according to PFAS exposure using restricted maximum likelihood method. Pooled RRs for occupational or environmental PFAS exposure were 1.20 (95% CI: 1.12-1.28; I<sup>2</sup> = 0.0%, p<sub>het</sub> = 0.9; n. studies = 9), 1.15 (95% CI: 0.96-1.37; I<sup>2</sup> = 0.0%, p<sub>het</sub> = 0.7; n. studies = 3), and 1.54 (95% CI: 0.86-2.78; I<sup>2</sup> = 69.0%, p<sub>het</sub> = 0.02; n. studies = 4) for lung, head and neck, and thyroid cancer, respectively. We did not find compelling evidence of publication bias for lung cancer (p = 0.3). Studies on statistically modelled serum PFAS levels did not support associations with these cancers. We found no positive associations between measured serum levels of 6 different types of PFAS and thyroid cancer. However, the pooled RR of two case-control studies nested within cohorts on the association between natural log-unit increase of perfluorooctanesulfonic acid (PFOS) and thyroid cancer was 1.51 (95% CI: 1.11-2.05; I<sup>2</sup> = 21.1%, p<sub>het</sub> = 0.3). PFAS exposure may be associated with lung and thyroid cancer. Due to the limited number of studies and their limitations, further prospective studies with appropriate account of co-exposure with other carcinogens and detailed exposure assessment are needed to establish causality of observed associations.</p>","PeriodicalId":312,"journal":{"name":"Environmental Research","volume":" ","pages":"120606"},"PeriodicalIF":7.7,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142821572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eric D van Hullebusch, Selvaraju Narayanasamy, Padmanaban Velayudhaperumal Chellam
{"title":"Editorial Note: Strategic engineering and functional mechanism elucidation of advanced materials in adsorption and catalysis for detoxification of contaminated water matrices.","authors":"Eric D van Hullebusch, Selvaraju Narayanasamy, Padmanaban Velayudhaperumal Chellam","doi":"10.1016/j.envres.2024.120575","DOIUrl":"https://doi.org/10.1016/j.envres.2024.120575","url":null,"abstract":"<p><p>Uncontrolled anthropogenic activities have contaminated water resources with emerging contaminants such as pharmaceuticals, pesticides, microplastics, per- and poly-fluoroalkyl substances (PFAS), and heavy metals, making them unsuitable for living ecosystems. Emerging contaminants pose a severe threat to ecosystems. Hence water treatment methods through improved efficiencies are essential for removing these contaminants at ease of application and at low energy. However, further developments and insights are needed to improve selectivity and efficiency by specifically tuning the materials used in these processes. Advances in material chemistry have created research interest and opportunities to manage water matrices effectively. Novel materials like MXene, Metal-Organic Frameworks (MOFs), Covalent Organic Frameworks (COFs), Graphene, and Engineered Heteroatom biochars are being developed to remediate these contaminants. Material scientists currently focus on synthesizing novel materials for adsorption and catalytic applications. Still, there is a decreasing trend among the scientific community to discuss the chemistry behind these modifications in detail. To encourage the scientific community to focus on design and modification aspects, the special issue aims to focus on an in-depth analysis of novel material modification using advanced computational approaches and spectroscopic studies and applying the designed materials in emerging contaminant removal.</p>","PeriodicalId":312,"journal":{"name":"Environmental Research","volume":" ","pages":"120575"},"PeriodicalIF":7.7,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142821571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nitrogen-phosphorus codoped biochar prepared from tannic acid for degradation of trace antibiotics in wastewater.","authors":"Xixi Di, Xia Zeng, Xiaoyu Zhang, Tian Tang, Zuoping Zhao, Wei Wang, Zhifeng Liu, Lingxia Jin, Xiaohui Ji, Xianzhao Shao","doi":"10.1016/j.envres.2024.120589","DOIUrl":"10.1016/j.envres.2024.120589","url":null,"abstract":"<p><p>This study was designed to develop a one-step pyrolysis process that could efficiently activate peroxymonosulfate (PMS) and degrade tetracycline hydrochloride (TCH) by producing N, and P codoped carbon materials (NPTC<sub>3</sub>-800). Furthermore, it exhibited a high specific surface area (658 cm<sup>2 g<sup>-1</sup></sup>), a larger pore volume (0.3 cm<sup>3 g<sup>-1</sup></sup>), and a certain content of heteroatoms (nitrogen and phosphorus). PMS-activated NPTC<sub>3</sub>-800 attained a TCH removal efficiency of over 90% within 40 min, with an observed rate constant (k<sub>obs</sub>) of 0.0307 min<sup>-1</sup>. Similarly, the materials exhibited strong resistance to ionic interferences and showed broad applicability across various water bodies. Mobility experiments were conducted to further assess the stability of catalyst (92%, 40 h). Non-radical oxidation pathways, particularly including the singlet oxygen (<sup>1</sup>O<sub>2</sub>), were evidenced to play dominant roles in TCH degradation, as demonstrated by electron paramagnetic resonance (EPR) observations and experiments with free radical quenching. Theoretical calculations demonstrated that the N and P codoped domains substantially improve TCH removal compared to pure biochar. Finally, the proposed degradation pathways for TCH were identified, and the resulting degradation products demonstrated reduced biological toxicity.</p>","PeriodicalId":312,"journal":{"name":"Environmental Research","volume":" ","pages":"120589"},"PeriodicalIF":7.7,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142821576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maude Colombini, Barbara Heude, Sarah Lyon-Caen, Cathrine Thomsen, Amrit K Sakhi, Séverine Valmary-Degano, Sam Bayat, Rémy Slama, Claire Philippat, Marion Ouidir
{"title":"Early-life exposures to phenols, parabens and phthalates and fat mass at 3 years of age in the SEPAGES cohort.","authors":"Maude Colombini, Barbara Heude, Sarah Lyon-Caen, Cathrine Thomsen, Amrit K Sakhi, Séverine Valmary-Degano, Sam Bayat, Rémy Slama, Claire Philippat, Marion Ouidir","doi":"10.1016/j.envres.2024.120555","DOIUrl":"https://doi.org/10.1016/j.envres.2024.120555","url":null,"abstract":"<p><strong>Background: </strong>Early-life exposure to short half-life chemicals may influence adiposity growth, a precursor to obesity. Previous studies often relied on limited urine samples that inadequately represent exposure during pregnancy or infancy. Additionally, childhood adiposity is commonly estimated using body mass index, which does not accurately reflect body composition. We aimed to investigate associations between early-life exposures to phenols, parabens, phthalates and fat mass percent at 3 years of age among 341 mother-child couple from the SEPAGES cohort. We further assessed potential effect modification by sex.</p><p><strong>Methods: </strong>We measured 8 phenols, 4 parabens, 13 phthalates and 2 non-phthalate plasticizer metabolites from weekly pooled urine sample collected from mothers during pregnancy (three urine samples a day, median 18 and 34 gestational weeks), and from their infant (one urine sample a day, at 2 and 12 months). Clinical examinations at 3 years included standardized skinfold thickness measurements and bioelectrical impedance analysis to calculate fat mass percentage.</p><p><strong>Results: </strong>Positive associations were identified between prenatal exposures to bisphenol S, mono-benzyl phthalate (MBzP), monoethyl phthalate (MEP), and mono-n-butyl phthalate and fat mass percentage at 3 years, while triclosan showed a negative association. MBzP and MEP showed effect modification by sex, with stronger associations among females. No significant associations were detected for postnatal exposures.</p><p><strong>Conclusion: </strong>This study suggests associations between prenatal exposures to short half-life chemicals and percent fat mass in preschool children. Furthermore, this study is the first investigating the impact of prenatal bisphenol S exposure, highlighting the need for investigation of this overlooked compound.</p>","PeriodicalId":312,"journal":{"name":"Environmental Research","volume":" ","pages":"120555"},"PeriodicalIF":7.7,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142821570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
David Salvatierra, María Pilar González, Julián Blasco, Marcos Krull, Cristiano V M Araújo
{"title":"Habitat loss and discontinuity as drivers of habitat fragmentation: The role of contamination and connectivity of habitats.","authors":"David Salvatierra, María Pilar González, Julián Blasco, Marcos Krull, Cristiano V M Araújo","doi":"10.1016/j.envres.2024.120609","DOIUrl":"10.1016/j.envres.2024.120609","url":null,"abstract":"<p><p>Habitat discontinuity of aquatic environments is a serious problem that might hamper the different activities performed by organisms. When combined with contamination, the consequences for the population's dynamics might be exacerbated, particularly regarding foraging activity. Therefore, the aim of this study was to evaluate the combined effects of habitat discontinuity and contamination on the foraging behavior by zebrafish (Danio rerio) and on their ability to explore heterogeneous landscapes. The organisms were exposed to three different scenarios of contamination (0, 0.5 and 25 μg L<sup>-1</sup> of Cu) and habitat discontinuity (zero, low and high), using the Heterogeneous Multi-Habitat Assay System (HeMHAS). Generalized Bayesian linear models were used to analyze the data and evidence ratios (ER) were used to test the hypotheses. As results, both high levels of contamination and habitat discontinuity had significant effects on the probability of organisms to reach food (ER = 111.8 and > 1,000, respectively), the time taken to reach food (ER = 532.22 and > 1000, respectively) and the time spent in each compartment (ER = 614.4 and > 1000 for contamination and the number of connections available, respectively). As conclusion, the habitat fragmentation as a consequence of contamination and discontinuity affected the probability of fish to reach food and the time spent to reach it. This could lead to additional energy budget with serious consequences for population dynamics. Also, the HeMHAS demonstrated its suitability to assess the role of the contamination and habitat connectivity stressors in the spatial distribution and habitat selection response.</p>","PeriodicalId":312,"journal":{"name":"Environmental Research","volume":" ","pages":"120609"},"PeriodicalIF":7.7,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142821573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}