城市极端温度暴露与早产:基于机器学习模型的时空风险区预测。

IF 7.7 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Yuxiao Wang , Lingchen Bu , Zanmei Wei , Yang Cheng , Ling Feng , Shaoshuai Wang
{"title":"城市极端温度暴露与早产:基于机器学习模型的时空风险区预测。","authors":"Yuxiao Wang ,&nbsp;Lingchen Bu ,&nbsp;Zanmei Wei ,&nbsp;Yang Cheng ,&nbsp;Ling Feng ,&nbsp;Shaoshuai Wang","doi":"10.1016/j.envres.2025.122230","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates temperature impacts on preterm birth (PTB) using residential address GPS coordinates for 311,972 pregnant women in Wuhan, China, coupled with daily environmental data. We developed a machine learning model to analyze the impact of environmental exposure on PTB. Results show PTB risks increase with temperatures below 14 °C or above 21 °C, excessive temperature variability, and acute exposure to extreme weather. Spatial analysis revealed heat-related risk zones concentrated in urban heat island areas, while cold-related risks were more widespread. This research provides novel insights into spatiotemporal patterns of temperature-related PTB risk, offering evidence-based recommendations for urban health planning and climate adaptation strategies. The integration of machine learning and spatial analysis represents a significant advancement in environmental health research methodology.</div></div>","PeriodicalId":312,"journal":{"name":"Environmental Research","volume":"284 ","pages":"Article 122230"},"PeriodicalIF":7.7000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extreme urban temperature exposure and preterm birth: Spatial-temporal risk zone prediction using machine learning models\",\"authors\":\"Yuxiao Wang ,&nbsp;Lingchen Bu ,&nbsp;Zanmei Wei ,&nbsp;Yang Cheng ,&nbsp;Ling Feng ,&nbsp;Shaoshuai Wang\",\"doi\":\"10.1016/j.envres.2025.122230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates temperature impacts on preterm birth (PTB) using residential address GPS coordinates for 311,972 pregnant women in Wuhan, China, coupled with daily environmental data. We developed a machine learning model to analyze the impact of environmental exposure on PTB. Results show PTB risks increase with temperatures below 14 °C or above 21 °C, excessive temperature variability, and acute exposure to extreme weather. Spatial analysis revealed heat-related risk zones concentrated in urban heat island areas, while cold-related risks were more widespread. This research provides novel insights into spatiotemporal patterns of temperature-related PTB risk, offering evidence-based recommendations for urban health planning and climate adaptation strategies. The integration of machine learning and spatial analysis represents a significant advancement in environmental health research methodology.</div></div>\",\"PeriodicalId\":312,\"journal\":{\"name\":\"Environmental Research\",\"volume\":\"284 \",\"pages\":\"Article 122230\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0013935125014811\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013935125014811","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用中国武汉311,972名孕妇的居住地址GPS坐标,结合日常环境数据,调查了温度对早产(PTB)的影响。我们开发了一个机器学习模型来分析环境暴露对肺结核的影响。结果表明,温度低于14°C或高于21°C、温度过度变化以及急性暴露于极端天气时,PTB风险增加。空间分析显示,热相关风险区域集中在城市热岛地区,而冷相关风险区域更为广泛。本研究为温度相关肺结核风险的时空格局提供了新的见解,为城市卫生规划和气候适应策略提供了循证建议。机器学习和空间分析的结合代表了环境健康研究方法的重大进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extreme urban temperature exposure and preterm birth: Spatial-temporal risk zone prediction using machine learning models
This study investigates temperature impacts on preterm birth (PTB) using residential address GPS coordinates for 311,972 pregnant women in Wuhan, China, coupled with daily environmental data. We developed a machine learning model to analyze the impact of environmental exposure on PTB. Results show PTB risks increase with temperatures below 14 °C or above 21 °C, excessive temperature variability, and acute exposure to extreme weather. Spatial analysis revealed heat-related risk zones concentrated in urban heat island areas, while cold-related risks were more widespread. This research provides novel insights into spatiotemporal patterns of temperature-related PTB risk, offering evidence-based recommendations for urban health planning and climate adaptation strategies. The integration of machine learning and spatial analysis represents a significant advancement in environmental health research methodology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Research
Environmental Research 环境科学-公共卫生、环境卫生与职业卫生
CiteScore
12.60
自引率
8.40%
发文量
2480
审稿时长
4.7 months
期刊介绍: The Environmental Research journal presents a broad range of interdisciplinary research, focused on addressing worldwide environmental concerns and featuring innovative findings. Our publication strives to explore relevant anthropogenic issues across various environmental sectors, showcasing practical applications in real-life settings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信