Yiwen Yang , Xiaoyue Tang , Pengfei Zhang , Chunhao Mo , Feng Huang , Zhiguo Wen
{"title":"Effect of microplastics on antibiotic resistome risk in composting","authors":"Yiwen Yang , Xiaoyue Tang , Pengfei Zhang , Chunhao Mo , Feng Huang , Zhiguo Wen","doi":"10.1016/j.envres.2025.122241","DOIUrl":null,"url":null,"abstract":"<div><div>Microplastics are a growing concern worldwide because of their impact on the environment and human health. Composting is an effective method for managing antibiotic resistome risk in organic waste, yet the effects of microplastics on antibiotic resistome risk in composting are not well understood. In this study of laying hen manure, the microplastic polypropylene increased the temperature of the compost but did not significantly affect the total composition, abundance and risk score of antibiotic resistance genes (ARGs) during composting. The dominant phyla on microplastics and manure were Actinobacteria, Firmicutes and Proteobacteria. <em>Escherichia</em> (bin.70), <em>Oceanobacillus</em> (bin.85) and <em>Mycobacterium</em> (bin.79) were the main ARG hosts. Among them, the abundance of the ARG host <em>Mycobacterium</em> (bin.79) was significantly higher in microplastics than in manure. Furthermore, ARG transfer occurred between the ARG host <em>Mycobacterium</em> (bin.79) and other microorganisms on microplastics and manure. These findings indicate that while microplastics may not strongly affect the overall antibiotic resistome risk during composting, they increase the likelihood of horizontal gene transfer in specific ARG hosts. This underscores the critical need to control both microplastic and resistance contamination.</div></div>","PeriodicalId":312,"journal":{"name":"Environmental Research","volume":"284 ","pages":"Article 122241"},"PeriodicalIF":7.7000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013935125014926","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Microplastics are a growing concern worldwide because of their impact on the environment and human health. Composting is an effective method for managing antibiotic resistome risk in organic waste, yet the effects of microplastics on antibiotic resistome risk in composting are not well understood. In this study of laying hen manure, the microplastic polypropylene increased the temperature of the compost but did not significantly affect the total composition, abundance and risk score of antibiotic resistance genes (ARGs) during composting. The dominant phyla on microplastics and manure were Actinobacteria, Firmicutes and Proteobacteria. Escherichia (bin.70), Oceanobacillus (bin.85) and Mycobacterium (bin.79) were the main ARG hosts. Among them, the abundance of the ARG host Mycobacterium (bin.79) was significantly higher in microplastics than in manure. Furthermore, ARG transfer occurred between the ARG host Mycobacterium (bin.79) and other microorganisms on microplastics and manure. These findings indicate that while microplastics may not strongly affect the overall antibiotic resistome risk during composting, they increase the likelihood of horizontal gene transfer in specific ARG hosts. This underscores the critical need to control both microplastic and resistance contamination.
期刊介绍:
The Environmental Research journal presents a broad range of interdisciplinary research, focused on addressing worldwide environmental concerns and featuring innovative findings. Our publication strives to explore relevant anthropogenic issues across various environmental sectors, showcasing practical applications in real-life settings.