{"title":"Groups with Spanier-Whitehead Duality","authors":"Shintaro Nishikawa, Valerio Proietti","doi":"10.14760/OWP-2019-23","DOIUrl":"https://doi.org/10.14760/OWP-2019-23","url":null,"abstract":"We introduce the notion of Spanier-Whitehead K-duality for a discrete group G, defined as duality in the KK-category between two C*-algebras which are naturally attached to the group, namely the reduced group C*-algebra and the crossed product for the group action on the universal example for proper actions. We compare this notion to the Baum-Connes conjecture by constructing duality classes based on two methods: the standard \"gamma element\" technique, and the more recent approach via cycles with property gamma. As a result of our analysis, we prove Spanier-Whitehead duality for a large class of groups, including Bieberbach's space groups, groups acting on trees, and lattices in Lorentz groups.","PeriodicalId":309711,"journal":{"name":"arXiv: K-Theory and Homology","volume":"27 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115161500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Homotopy equivalence in unbounded\u0000KK-theory","authors":"Koen van den Dungen, B. Mesland","doi":"10.2140/AKT.2020.5.501","DOIUrl":"https://doi.org/10.2140/AKT.2020.5.501","url":null,"abstract":"We propose a new notion of unbounded $K!K$-cycle, mildly generalising unbounded Kasparov modules, for which the direct sum is well-defined. To a pair $(A,B)$ of $sigma$-unital $C^{*}$-algebras, we can then associate a semigroup $overline{U!K!K}(A,B)$ of homotopy equivalence classes of unbounded cycles, and we prove that this semigroup is in fact an abelian group. In case $A$ is separable, our group $overline{U!K!K}(A,B)$ is isomorphic to Kasparov's $K!K$-theory group $K!K(A,B)$ via the bounded transform. We also discuss various notions of degenerate cycles, and we prove that the homotopy relation on unbounded cycles coincides with the relation generated by operator-homotopies and addition of degenerate cycles.","PeriodicalId":309711,"journal":{"name":"arXiv: K-Theory and Homology","volume":"56 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128479643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}