无界kk理论中的同伦等价

Koen van den Dungen, B. Mesland
{"title":"无界kk理论中的同伦等价","authors":"Koen van den Dungen, B. Mesland","doi":"10.2140/AKT.2020.5.501","DOIUrl":null,"url":null,"abstract":"We propose a new notion of unbounded $K\\!K$-cycle, mildly generalising unbounded Kasparov modules, for which the direct sum is well-defined. To a pair $(A,B)$ of $\\sigma$-unital $C^{*}$-algebras, we can then associate a semigroup $\\overline{U\\!K\\!K}(A,B)$ of homotopy equivalence classes of unbounded cycles, and we prove that this semigroup is in fact an abelian group. In case $A$ is separable, our group $\\overline{U\\!K\\!K}(A,B)$ is isomorphic to Kasparov's $K\\!K$-theory group $K\\!K(A,B)$ via the bounded transform. We also discuss various notions of degenerate cycles, and we prove that the homotopy relation on unbounded cycles coincides with the relation generated by operator-homotopies and addition of degenerate cycles.","PeriodicalId":309711,"journal":{"name":"arXiv: K-Theory and Homology","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Homotopy equivalence in unbounded\\nKK-theory\",\"authors\":\"Koen van den Dungen, B. Mesland\",\"doi\":\"10.2140/AKT.2020.5.501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new notion of unbounded $K\\\\!K$-cycle, mildly generalising unbounded Kasparov modules, for which the direct sum is well-defined. To a pair $(A,B)$ of $\\\\sigma$-unital $C^{*}$-algebras, we can then associate a semigroup $\\\\overline{U\\\\!K\\\\!K}(A,B)$ of homotopy equivalence classes of unbounded cycles, and we prove that this semigroup is in fact an abelian group. In case $A$ is separable, our group $\\\\overline{U\\\\!K\\\\!K}(A,B)$ is isomorphic to Kasparov's $K\\\\!K$-theory group $K\\\\!K(A,B)$ via the bounded transform. We also discuss various notions of degenerate cycles, and we prove that the homotopy relation on unbounded cycles coincides with the relation generated by operator-homotopies and addition of degenerate cycles.\",\"PeriodicalId\":309711,\"journal\":{\"name\":\"arXiv: K-Theory and Homology\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/AKT.2020.5.501\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/AKT.2020.5.501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

我们提出了无界$K\!K$ -循环的新概念,温和地推广了无界卡斯帕罗夫模,其直接和是定义良好的。对于一对$(A,B)$$\sigma$ -单$C^{*}$ -代数,我们可以关联一个无界环的同伦等价类的半群$\overline{U\!K\!K}(A,B)$,并证明了这个半群实际上是一个阿贝尔群。在$A$可分的情况下,我们的群$\overline{U\!K\!K}(A,B)$通过有界变换同构于卡斯帕罗夫的$K\!K$ -理论群$K\!K(A,B)$。讨论了简并环的各种概念,并证明了无界环上的同伦关系与简并环的算子同伦和加法所产生的关系是一致的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Homotopy equivalence in unbounded KK-theory
We propose a new notion of unbounded $K\!K$-cycle, mildly generalising unbounded Kasparov modules, for which the direct sum is well-defined. To a pair $(A,B)$ of $\sigma$-unital $C^{*}$-algebras, we can then associate a semigroup $\overline{U\!K\!K}(A,B)$ of homotopy equivalence classes of unbounded cycles, and we prove that this semigroup is in fact an abelian group. In case $A$ is separable, our group $\overline{U\!K\!K}(A,B)$ is isomorphic to Kasparov's $K\!K$-theory group $K\!K(A,B)$ via the bounded transform. We also discuss various notions of degenerate cycles, and we prove that the homotopy relation on unbounded cycles coincides with the relation generated by operator-homotopies and addition of degenerate cycles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信